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IntroductIon

Biological invasions pose a growing threat to biodiver-
sity and ecosystem functioning worldwide (Gilbert and 
Levine 2013). It is widely accepted that multifaceted 
 strategies are needed to reduce the likelihood of new inva-
sions, eradicate early- stage invaders where feasible, and to 
reduce the density, extent, and impact of widespread 
invaders (Simberloff  et al. 2005). Because there is far less 

funding available than is needed to control all biological 
invasions, conservation managers have to practice triage 
by prioritizing where they intervene, based on predic-
tions of the effectiveness of interventions and, their costs 
and benefits (i.e. avoided damages; Gren 2008).

Despite a number of advances in approaches and tools 
for assigning priority to and within different phases of 
invasive species management (Panetta 2009, Epanchin- 
Niell and Hastings 2010), the practical usefulness of these 
approaches depend on the accuracy of the information on 
which they are based. Although billions of dollars have 
been spent controlling invasive species, there is a lack of 
evidence about the effectiveness and cost- effectiveness of 
controlling them (Kettenring and Adams 2011). Without 
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such information, decision- makers risk not maximizing 
return on their limited budgets (Naidoo et al. 2006) and 
not learning from past successes and failures (Hobbs 2009, 
Roura- Pascual et al. 2010).

The paucity of evidence results from the difficulty in 
measuring the effect of invasive species removal. 
Researchers must estimate the difference between the out-
come (e.g. percent cover) where the removal program 
intervened (Fig. 1C) and what would have been observed 
had there been no intervention (Fig. 1B; Ferraro and 
Pattanayak 2006). In the program evaluation literature, 
this is called a counterfactual analysis, which formally 
compares what actually happened and what would have 
happened in the absence of an intervention. Because the 
counterfactual is unobservable, researchers must use the 
outcome from an area that was not treated (Fig. 1E) or 
before the intervention happened (Fig. 1A) or as a surro-
gate for the counterfactual outcome (see the formal 
description in Methods).

The most credible way of assessing this difference would 
be to randomly assign which areas get treated and which 
areas do not (i.e. the outcome of areas randomized to the 
untreated group provide an estimate of the counterfac-
tual). A researcher would have to simply compare the dif-
ference in mean outcomes between treated and untreated 
groups (Holland 1986). Unfortunately, randomized- 
experimental studies have been restricted to very small 
temporal and spatial scales because most experiments are 
constrained by limited budgets and time- frames and do 
not form part of operational program interventions 
(Kettenring and Adams 2011,] but see Lindenmayer et al. 
2015,] as an exception). The results of these small- scale 
experiments have limited use in estimating the cost- 
effectiveness of controlling invasive species in real- world 
operational contexts where decisions are made at the scale 
of landscapes and larger political units.

Another option would be to measure the 
 cost- effectiveness of nonexperimental landscape- scale 
operations. In the absence of experimental manipulation, 
however, researchers cannot simply compare outcomes 
on treated (Fig. 1C) and untreated (Fig. 1E) units. If treat-
ment selection bias exists which is also correlated with the 
outcome (e.g., sites that are selected for treatment have a 
lower baseline invasive plant presence than untreated 
areas, Fig. 1A vs. D), then naïve treated–untreated com-
parisons will be confounded by such factors (Pearl 2009). 
For these reasons, unbiased comparisons rely on the retro-
spective identification of, and adjustment for, confound-
ing factors which requires a thorough understanding of 
the reasons for implementation of a program (Ferraro and 
Hanauer 2014).

Over the past two decades, the program- evaluation field 
has developed a number of innovative statistical tech-
niques for improving the credibility of how counterfactual 
estimates are made in nonexperimental contexts (Imbens 
and Wooldridge 2009). As a practical demonstration we 
show how one of these approaches, a statistical matching 
technique, can be used to measure the cost- effectiveness of 

reducing invasive alien tree presence by selected opera-
tions within South Africa’s Working for Water program. 
The operations took place in a large mountainous area in 

FIg. 1. Illustration of why measuring the effectiveness of 
removing invasive species requires accurate estimates of an 
unobservable counterfactual. (A) A starting point will result in 
different potential outcomes, depending on if it was (B) not 
treated or (C) treated. If (A) were treated, its true treatment 
effect would be the difference in the number of cells occupied by 
invasive trees between (C) and (B). The problem is that only (C) 
would be observable if (A) were treated; (B) is an unobservable 
counterfactual outcome. Without being able to observe the 
counterfactual a researcher has to use the outcome from an area 
that was not treated, for example (E), as a surrogate for the 
counterfactual (B). In this case, however, the treatment effect 
(difference in cells occupied between (C) and €) would be 
confounded because (C) was less invaded than (E) before it was 
treated (D).
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the Cape Floristic Region (CFR), a globally renowned 
biodiversity hotspot where invasive plants are one of the 
main problems facing conservation managers (Rouget 
et al. 2003, van Wilgen 2013). The Working for Water 
 program has been described as the world’s most ambitious 
invasive plant control program (Koenig 2009) and 
Africa’s largest conservation project (van Wilgen 2009). 
However, mirroring the global situation, almost nothing 
is known about the cost- effectiveness of this intervention 
(McConnachie et al. 2012). To identify where the program 
was most cost- effective, we also measured its impact 
within different land use and ownership types.

Methods

Study area and program background

Our study area was located in the Hawequas Mountain 
Fynbos complex (Cowling and Heijnis 2001), covering an 
area of 1451 km2 in the southwestern part of South 
Africa’s Western Cape Province. Most of the study area 
was untransformed mountainous land, located within 
protected areas (Table 1). Within the study area, alien pine 
trees (Pinus pinaster and P. radiata) were grown in planta-
tions for commercial forestry, and other alien trees 
(mostly Australian Acacia and Eucalyptus species) were 
grown in woodlots or as windbreaks. These alien tree spe-
cies have invaded areas outside of where they were 
planted. Most of the plantations in the study area were 
state- run until the 1990s, after which they were either 
leased to private forestry companies or scheduled for 
“exit” from use for timber production (Louw 2004). 
Consequently, a portion of clearing effort has been 
devoted to abandoned plantations, as part of the “exit 
strategy” for commercial forestry in the region.

Mountain fynbos, the dominant vegetation type in the 
study area, is a fire- prone shrubland that is susceptible to 
invasion by fire- adapted invasive alien trees, even in the 
absence of human disturbance (Richardson and Cowling 

1992, van Wilgen 2013). Fynbos areas covered by dense 
stands of invasive trees use more water than non- invaded 
fynbos, reducing the delivery of water from catchments 
(Le Maitre et al. 1996). This was the main justification for 
the establishment of the Working for Water program in 
1995, along with the opportunities it offered to provide 
employment in impoverished rural areas (McConnachie 
et al. 2013). Studies predict that the region will become sig-
nificantly dryer over the next 40 yr, which increases the 
urgency of dealing with water- reducing plant invasions 
(Stager et al. 2012).

The long- term cost- effectiveness of invasive- tree- 
clearing in the region depends importantly on the effi-
ciency of clearing post- treatment regrowth (Holmes et al. 
2008). For example, in our study area, regrowth can result 
from coppicing of felled Acacia and Eucalyptus trees, and 
from seed for all tree species, especially after fires. 
Treatment of regrowth requires either hand- pulling, 
mechanical cutting, or the application of herbicides or 
burning before the plants produce seed. If left for too long, 
these methods become ineffective, and full- scale felling 
would be required to re- clear the area, often at greater cost 
than the initial treatment (McConnachie et al. 2012). 
Depending on the size of the seed bank, multiple follow- up 
treatments are usually required, sometimes spanning dec-
ades (van Wilgen et al. 1992).

Data

We mapped invasive tree presence using aerial photo-
graphs taken in 1987 and 2010. We obtained the images from 
the Department of Rural Development and Land Reform 
(Chief Directorate: National Geo- spatial Information, 
Mowbray, South Africa). The scale of the 1987 and 2010 
images was 1:30 000 and 1:10 000, respectively. The high reso-
lution of the photographs, coupled with the contrast between 
fynbos and taller invasive trees, made it possible to identify 
individual adult trees. We first drew polygons around areas 
of solid invasive tree cover and added points for scattered 

Table 1. Descriptive statistics of the different land use types and land ownership types in the study area.

Variables

Proportion 
of total 

study area

Proportion 
of treated 

area

Proportion 
of program 
expenditure

Proportion of total cells 
occupied by invasive trees

Mean proportion of cells 
occupied by invasive trees 

(standard deviation)

1987 2010 1987 2010

Land use type
Untransformed 0.82 0.91 0.72 0.27 0.37 0.03 (0.17) 0.03 (0.17)
Transformed 0.13 0.04 0.10 0.30 0.28 0.19 (0.4) 0.15 (0.35)
Plantation 0.05 0.05 0.18 0.43 0.35 0.73 (0.44) 0.46 (0.5)

Land ownership type
State protected area 0.42 0.53 0.34 0.12 0.19 0.02 (0.15) 0.03 (0.17)
Private protected area 0.33 0.29 0.25 0.19 0.18 0.05 (0.22) 0.04 (0.19)
Private unprotected 

area
0.21 0.10 0.20 0.45 0.41 0.18 (0.39) 0.13 (0.34)

Former state forestry 0.04 0.07 0.21 0.24 0.22 0.49 (0.5) 0.33 (0.47)

Notes: Records of Working for Water treatments began in 2001. Treatment management areas represented 31.9% of the total study area, 
which covers 1 451 km2. Total recorded costs were 34.8 million South African rand (ZAR); 1 US$ ~10 ZAR.



MATTHEW M. MCCONNACHIE ET AL. Ecological Applications 
Vol. 26, No. 2

478

trees. We then overlaid a 20 × 20 m grid and gave a presence–
absence classification if cells intersected the polygons or 
points. The cells were our unit of analysis. Finally, we asked 
Working for Water managers to cross- check our mapping 
based on their knowledge of the area and other invasive tree 
spatial records that they had (e.g., Forsyth 2012).

We used Working for Water’s spatial records, dating 
from 2000, to obtain the costs incurred in treating areas. 
The treatment areas, recorded as polygons (see blue areas in 
Fig. 2), were a group of management areas ranging in size 
from less than a hectare to several hundreds of hectares. For 
most polygons only a small fraction were invaded by trees 
and hence actually treated. We adjusted all costs to 2014 
values to account for inflation. Costs excluded overhead 
costs, i.e., management and implementing agent fees. We 
therefore only included costs spent on clearing trees, exclud-
ing costs spent treating invasive shrubs. From anecdotal 
accounts we knew that the bulk of clearing took place after 
2000 shortly when our treatment records began. However, 
there are accounts of clearing operations between 1987 (the 
date of our baseline estimate) and 2001 by agencies respon-
sible for management at the time. These included the former 
Department of Forestry (1987–1990), CapeNature (1990–
1995), and Working for Water (1996–2001).

We used several data sources for the covariate informa-
tion. We used the South African Department of Land 
Affairs data sets for roads (excluding tracks and footpaths), 
altitude, and rivers. Riparian areas were defined by a 50- m 
buffer along rivers. We mapped the different land uses (listed 
in Table 1) using the 1987 aerial photographs and cross- 
checked this with the 2001 National Land Cover Layer. We 
classified areas where fynbos had been cleared for agricul-
ture or settlements as transformed. For the land ownership 
types (listed in Table 1), we used the boundaries of protected 
areas in the 2011 National Biodiversity Assessment. Finally, 

for estimating the surrounding invasive tree presence, we 
used the ArcGIS 10.2 point density function to calculate for 
each cell the area of surrounding cells (within 100 m) occu-
pied by invasive trees in 1987 (ArcGIS; ESRI, Redlands, 
California, USA). For the analysis we selected a sample of 
15 000 cells. We did this to reduce potential interference 
between cells (i.e. the outcome on one cell is unaffected by the 
assignment of treatments on the other cell).

Defining the treatment effect

We introduce notation to define the treatment effect 
that we estimated. Our outcome variable (Y) was equal to 
one (Y = 1) if a cell (20 × 20 m) was occupied by invasive 
trees in 2010, and equal to zero (Y = 0) otherwise. Like the 
outcome, the treatment variable (D) was also binary, with 
cells either treated (D = 1) or untreated (D = 0). Therefore, 
each cell had two potential outcomes regardless of 
whether it was treated or not: Y1, the invasive tree occupa-
tion when the unit was treated (e.g. Fig. 1C), and Y0, inva-
sive tree occupation when the cell was untreated (e.g. 
Fig. 1B). We were interested in measuring, in statistical 
jargon what is called the “average treatment effect on the 
treated” cells (ATT): ATT = E(Y1−Y0|D = 1); the average 
impact of treatment for a randomly chosen cell from the 
population of cells that were treated by the program. In 
other words, the ATT was the difference in invasive tree 
presence with the program and without the program for 
the cells actually exposed to the program. For these cells, 
we can observe outcomes with the program, and thus we 
can estimate E(Y1 | D = 1). However, we cannot observe 
the counterfactual outcomes of treated cells had they 
remained untreated, and thus we needed a way to estimate 
E(Y0|D = 1) from what we could observe (e.g. untreated 
cells).

Identifying confounding factors through understanding 
program implementation

The first step in selecting a comparison group was to 
identify possible confounding factors: variables that 
jointly affect why cells were treated and the outcome. To 
identify confounders we drew on our experience of how the 
program is implemented (van Wilgen et al. 2012a, 
McConnachie et al. 2013) and discussions with program 
managers. The main potential confounders that we identi-
fied related to the type of land ownership and land use the 
program worked on, baseline invasive tree presence (the 
program tended to treat less invaded cells), site accessibil-
ity, and where invasive trees grow in the landscape (see 
Table 2 for details).

Selecting untreated cells for the counterfactual using 
matching

We used a matching technique to account for the con-
founding factors that we identified above (Ho et al. 2007). 
The goal of matching was to make the treated and selected 

FIg. 2. Invasive tree presence marked in red, in 1987 and 
2010, on the Hawequas study area within South Africa’s 
Western Cape Province (see inset map) ~50 km east of Cape 
Town. Areas that Working for Water treated are marked blue.

1989 2010

40 km
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untreated comparison cells (counterfactual) as similar as 
possible to what would result from a randomized experi-
ment. The matching algorithms worked by reweighting the 
untreated cells to select a comparison group that, on aver-
age, was observably similar to the treated cells in terms of the 
distributions of the confounding factors (called “balance”). 
To assess balance we used summaries of the difference in 
means as well as summaries of the empirical quantile–quan-
tile plots (see Appendix S1: Tables S1–S4 for summaries of 
these measures for each confounding variable).

We selected a matching approach that gave the best bal-
ance: a genetic search optimization algorithm (Diamond 
and Sekhon 2006), using one- to- one matching with 
replacement. We used the package matching (Sekhon 
2011) in R (R Development Core Team 2013). To calcu-
late the precision of our estimates, we calculated heter-
oskedasticity robust estimates of the standard errors 
(Abadie and Imbens 2006).

Cost- effectiveness estimates

We calculated the cost- effectiveness estimates by divid-
ing the total treatment costs by the area of previously 
invaded cells that had been cleared of invasive trees in 2010 
as a result of control (estimated by the estimates of the 
ATT). Our cost- effectiveness estimates did not include 
allowances for future follow- up costs.

Robustness tests

Spillovers

Our estimates might have been biased if the outcomes of 
untreated cells close to Working for Water treated cells 
were affected by the treatments (called spillover effects). 
This could happen, for example, if landowners adjacent to 
treatment areas were incentivized to clear their lands. We 
tested for spillover effects by comparing the difference in 
invasive tree presence between cells within 100 m of 
treated cells, with similar cells greater than this distance 
(i.e., the counterfactual). We selected the counterfactual 
cells using the same statistical matching technique used in 
the other analyses. We note that our local spillover analy-
sis would not be able to pick up potentially more complex 
spillover scenarios (for example public awareness being 
raised about invasive species by Working for Water’s pres-
ence in the study area).

Unobserved confounding factors

The major challenge of  nonexperimental studies is that 
researchers have to retrospectively account for all possible 
confounding factors (i.e., no unobservable confounders 
exist, or are perfectly correlated with the observable con-
founders; Ferraro and Hanauer 2014). Although we 
believe we accounted for the most important possible 

taBle 2. A list of the types of confounding factors, the variables used to measure them, and a description of the mechanism 
through which the confounders jointly affect why certain areas were treated by Working for Water and the outcome (invasive tree 
presence).

Type Variables used

Mechanism through which it affects

ReferencesTreatment selection Outcome

Land ownership State protected area, 
private protected 
area, private 
unprotected or state 
forestry land

Program prefers to work on 
state owned land (protected 
areas and plantations) 
because program is state 
funded.

State protected land and 
state plantation land 
might be less or more 
invaded, respectively, 
than other land 
ownership types.

van Wilgen et al. 
2012b,

Land use Untransformed, 
transformed, and 
plantation land

Program prefers untrans-
formed land compared to 
other land use types because 
of greater potential for 
recovery of native 
biodiversity.

Transformed and 
plantation land more 
invaded, older 
invasions, more 
disturbed

Rouget et al. 2003, 
Spear et al. 
2013,

Pre- treatment 
invasive tree 
presence

Invasive tree presence 
and surrounding 
presence in 1987, 
mean annual 
precipitation, 
altitude

Presence and density of 
invasive trees could 
influence treatment 
location.

Sites more invaded 
prior to treatment 
more likely to be 
invaded after 
treatment

Holmes et al. 2008,

Access Distance to nearest 
road, or transformed 
land and plantation, 
altitude

Accessibility of a site might 
affect if it gets treated.

More accessible sites 
(closer to roads and 
areas where humans 
live) tend to be more 
invaded.

Rouget et al. 2003, 
Spear et al. 
2013,

Growth location Riparian area Program might target invaded 
riparian areas because inva-
sive trees consume more wa-
ter here.

Riparian areas more 
prone to disturbance, 
resulting in higher 
risk of being invaded.

Holmes et al. 2008
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confounding factors we might well have missed others. To 
address this issue we used Rosenbaum’s (2002) sensitivity 
analysis, using the R package rbounds (Keele 2011), to 
determine how strongly a hidden confounder (or set of 
them) would have to be to result in us falsely rejecting a 
null hypothesis of  no treatment effect (using the Wilcoxon 
test statistic). Intuitively, the test works by increasing the 
odds of  comparison group cells being treated by a factor 
of  gamma (Γ). The farther the gamma values are from 
one, the more robust the estimated effect is to potential 
hidden bias.

results

Descriptive statistics

The percentage of all grid cells occupied by invasive 
trees in the study area declined from 8.6% (standard devia-
tion: 28%) in 1987 to 6.6% (25%) in 2010. On treated cells 
the percentage presence declined from 8.2% (27%) to 2.8% 
(17%), whereas on untreated cells it declined from 8.7% 
(28%) to 8.3% (28%).

In terms of the land use sub- groups, plantation and 
transformed land made up a small percentage (5% and 
13%, respectively) of the total study area (Table 1). 
However, most of the invasive trees were found on these 
land use types (63% of grid cells occupied in 2010; 
Table 1). Likewise, in terms of different land ownership 
types, the majority of invasive trees occupied unprotected 
private land and plantations formerly managed by the 
state.

Most the program’s treatment management areas were 
located on untransformed land (91%) and protected area 
land (82%, state and privately owned combined), which was 
only sparsely invaded (Table 1). Transformed and planta-
tion land only made up a small percentage of the total treat-
ment area (4% and 5%, respectively), but because it was 
more densely invaded a sizable percentage (10% and 18%, 
respectively) of the program’s budget was spent on these 
areas.

Effectiveness and cost- effectiveness estimates

The relatively sparse nature of tree invasions in the 
untransformed landscapes meant the treatment effects (in 
terms of reduced occupancy) were not large (Table 3). 
Clearing treatments on densely occupied transformed and 
plantation land, however, led to large reductions in occu-
pancy. This meant that clearing dense areas appears more 
cost- effective over the time period.

Counterfactual rates of spread on treated cells

On treated untransformed land, had the treatments not 
happened, the percentage of cells occupied by invasive trees 
would have increased slightly over the treatment period 
(0.8%; Table 3). This was calculated by subtracting the 
counterfactual outcome values for treated cells in 2010 from 
the same treated cells in 1987. On the other land use types 
the invasive tree presence would have declined slightly even 
if there had been no intervention by Working for Water, 
because clearing by other agencies also took place.

Robustness tests

Our estimates were robust to potential hidden bias 
(Table 3). We detected no significant (P = 0.46) spillover 
effects from treatment areas to neighboring untreated 
areas. The proportion of cells occupied by alien trees 
within 100 m of treated areas was only 0.8% (standard 
error of 1.2%) lower than cells further away than this.

dIscussIon

Improving counterfactual estimates

We have demonstrated that accurately measuring the 
effectiveness of invasive species removal depends on accu-
rately measuring counterfactual outcomes: in our case, the 
proportion of grid cells occupied by invasive trees without 
Working for Water treatments. For example, our esti-
mates of impact would have been different if we had used 
the proportionate invasive tree occupancy on untreated 

taBle 3. Estimates of treatment effectiveness (change in proportion of sampled cells occupied by invasive trees resulting from the 
program intervention) and cost- effectiveness.

Variables

1987 2010 Estimate

P SE Γ
CE 

(ZAR)
CF 

spreadT U T U CF Naive Match

Overall 0.056 0.061 0.027 0.065 0.055 −0.038 −0.028 0.001 0.008 2 27 ,838 −0.01
Land use type

Untransformed 0.046 0.021 0.022 0.035 0.054 −0.013 −0.032 0.000 0.006 2.8 18, 932 0.08
Transformed 0.298 0.185 0.092 0.148 0.221 −0.057 −0.130 0.000 0.021 2.9 14 ,394 −0.08
Plantation 0.648 0.761 0.068 0.621 0.439 −0.552 −0.371 0.000 0.027 11.7 8 ,069 −0.21

Notes: Treated (T) and untreated (U) columns for 1987 and 2010 show the mean proportion of sampled cells occupied by invasive 
trees for the respective treated and untreated cells. The counterfactual (CF) estimate shows counterfactual mean presence of inva-
sive trees for treated cells in 2010. The naïve estimate is the difference between these treated cells and the untreated cells in 2010 
without accounting for confounding factors. The matching estimate is the difference between the treated cells and the counterfactual 
cells. Γ measures a sensitivity test. Cost- effectiveness (CE) is shown as South African rand per ha reduced; 1$ US ~10 ZAR. The 
counterfactual spread for treated cells was calculated by subtracting the counterfactual outcome values for treated cells in 2010 from 
the same treated cells in 1987.
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cells, or the occupancy before treated cells were treated, as 
a surrogate for the average counterfactual outcome (as 
used elsewhere, e.g. McConnachie et al. 2012, van Wilgen 
et al. 2012b). Likewise, our impact estimates would have 
been inaccurate if we had assumed that invasive trees 
would have spread at a constant rate across the different 
land use and land ownership types in the absence of the 
program. We estimated that invasive tree occupancy 
would have actually declined on transformed and planta-
tion land, even had Working for Water not intervened, 
because of other clearing that took place. On untrans-
formed land we estimated that invasive trees would have 
spread by only 0.8% per annum, compared to estimates of 
between 3.75% and 20.6% made by other studies 
(Richardson and Brown 1986, Higgins et al. 2000, Moeller 
2010). By using the matching design we were able to select 
untreated cells that were as similar as possible to treated 
cells (in terms of observable confounding factors) and 
hence a make a more credible counterfactual estimate. 
The matching design that we demonstrated here is just one 
of many innovative empirical designs developed by the 
program evaluation field to evaluate the impact of public 
policy interventions in nonexperimental contexts (Imbens 
and Wooldridge 2009). These approaches offer many 
opportunities for improving the way conservation inter-
ventions are evaluated (Ferraro and Hanauer 2014).

Cost- effectiveness of clearing effort

Compared to previous evaluations of Working for 
Water’s effectiveness (McConnachie et al. 2012, van 
Wilgen et al. 2012b), we found that within the study area 
the program has effectively reduced invasive plant occu-
pancy on treated areas, and depending on the rate of 
future spread it could bring the tree invasion under con-
trol. For example, if the program were to focus its clearing 
effort on untransformed land, at the current rate of reduc-
tion (181 ha per annum on average during the treatment 
period) it would bring the invasion under control (i.e. 
reduce cover close to zero) within 20–63 yr (depending on 
if the future spread rate were 0% or 5% per annum, 
respectively).

Importantly though, the clearing operations in our 
study area are regarded as being among the more effective 
projects in the region, and our findings may therefore not 
be representative of the outcome of clearing operations 
when assessed at the scale of the CFR (e.g. van Wilgen et al. 
2012b). The relatively high level of effectiveness of clearing 
in our study area could also arguably be attributed to man-
agement by a motivated implementing agent (in this case 
the provincial conservation agency Cape Nature, which 
has a mandate for biodiversity conservation, and is staffed 
by trained and motivated conservation managers). In our 
experience, the same levels of motivation are not always 
found in alternative implementing agents used by Working 
for Water, who may have other priorities. Further evalua-
tions are urgently needed so that the drivers and determi-
nants of efficiency can be better understood (van Wilgen 

et al. 2012a). There are major opportunities for transfer-
ring lessons from successful to less successful operations 
(Roura- Pascual et al. 2011).

Although we found that the treatments were more effec-
tive in reducing invasive tree occupancy than found in 
other study areas (van Wilgen et al. 2012a), our estimates 
of cost were between 2.7 and 4.9 times higher than those 
estimated elsewhere (Le Maitre et al. 2002, Marais and 
Wannenburgh 2008). We likely underestimated costs 
because we did not account for the costs of clearing future 
invasive tree regrowth on the sites. In addition, the area of 
grid cells where invasive trees were present might have been 
greater than the actual canopy cover of invasive trees. This 
has implications for what the program can achieve with its 
limited budget and how cost- effectively it can protect eco-
system services like the delivery of water from catchment 
areas. To date it has cost 35 million rand (US$3.5 million) 
to reduce invasive tree occupancy by 2.8% on treated areas. 
At this rate of clearing, it would cost a further 67 million 
rand (US$6.7 million) to remove invasive trees from 
untransformed areas in the study area, even if  no further 
spread occurs. To put this cost into perspective, this is 
equivalent to 84% of an earlier estimate of the cost 
(112 million rand, US$ 11.2 million) to control all invasive 
plants (shrubs and trees) in the entire CFR (Frazee et al. 
2003). This highlights the need to focus scarce resources on 
priority areas, so that available funds can be more effec-
tively utilized. Currently, there is a lack of focus that leads 
to the dilution of funding, with the inevitable consequence 
that not enough projects are making adequate progress 
(van Wilgen et al. 2012a).

Why is our estimate of cost- effectiveness so much 
higher than the predictions of previous studies? Previous 
studies used estimates of cost- effectiveness that assumed 
that the trees would not reestablish after clearing, but in 
reality trees do regrow if not properly treated 
(McConnachie et al. 2013). These previous studies also 
assumed that only two follow- up treatments would be 
required when in reality many more treatments may be 
needed (some areas have been treated 10 times and still 
need further follow- up treatments).

We assessed one possible outcome from the program 
(invasive tree presence), future research is needed to assess the 
long- term impacts of the program on native species recovery 
and its impact on ecosystem services such as increases in 
water runoff. Future research is also needed to make more 
detailed species- level cost- effectiveness estimates.

How the counterfactual informs removal effort

Counterfactual estimates are important for informing 
where conservation effort should be targeted, depending 
on the goal, budget, and time- frame of the intervention. 
We found that if the goal is to reduce invasive tree occu-
pancy as much as possible within the time of the treatment 
period (2002–2009), given its budget of 35 million rand 
during this period, Working for Water would have been 
able to reduce the highest amount of invasive tree 
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occupancy on transformed and abandoned plantation 
areas because the treatments were most cost- effective 
there. However, over a longer time- frame, and given that 
invasive trees will likely continue to spread on untrans-
formed areas, it would be more cost- effective to target 
untransformed areas (Higgins et al. 2000). If the goal of the 
program were to avoid new areas from becoming invaded 
(e.g. to minimize biodiversity loss), then the program 
would have been better off targeting untransformed areas 
exclusively. However, clearing effort would still be 
required to contain invasive trees spreading from planta-
tion and transformed areas into untransformed areas 
(McConnachie et al. 2015).

The finding that it would be most effective to focus 
clearing efforts on sparse rather than densely invaded por-
tions of an infestation is not new. Higgins et al. (2001), for 
example, concluded that clearing strategies that prioritize 
low- density sites dominated by juvenile alien plants 
proved to be the most cost effective. van Wilgen et al. 
(2000) also suggested that an approach that focused clear-
ing operations on scattered, outlying populations would 
be the most cost effective in situations where the funds 
available for control are limited (as is almost always the 
case). Both of these studies support our finding that clear-
ing would have been more effective had it focused on clear-
ing surrounding sparsely invaded land as opposed to 
densely invaded areas.

Decisions regarding strategies for clearing invasive spe-
cies over large areas will not be resolved until credible 
empirical evidence on the cost- effectiveness of controlling 
them is available. Even large programs like Working for 
Water currently do not evaluate the outcomes of their 
interventions (called impact evaluations). Instead, at best, 
they only evaluate whether or not interventions were 
implemented properly (called process evaluations; Mascia 
et al. 2014). Although process evaluations are important, 
they cannot elucidate differences that interventions are 
making.
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