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Abstract: The fundamental challenge of evaluating the impact of conservation interventions is that re-
searchers must estimate the difference between the outcome after an intervention occurred and what the
outcome would have been without it (counterfactual). Because the counterfactual is unobservable, researchers
must make an untestable assumption that some units (e.g., organisms or sites) that were not exposed to the
intervention can be used as a surrogate for the counterfactual (control). The conventional approach is to
make a point estimate (i.e., single number along with a confidence interval) of impact, using, for example,
regression. Point estimates provide powerful conclusions, but in nonexperimental contexts they depend on
strong assumptions about the counterfactual that often lack transparency and credibility. An alternative
approach, called partial identification (PI), is to first estimate what the counterfactual bounds would be if
the weakest possible assumptions were made. Then, one narrows the bounds by using stronger but credible
assumptions based on an understanding of why units were selected for the intervention and how they might
respond to it. We applied this approach and compared it with conventional approaches by estimating the
impact of a conservation program that removed invasive trees in part of the Cape Floristic Region. Even when
we used our largest PI impact estimate, the program’s control costs were 1.4 times higher than previously
estimated. PI holds promise for applications in conservation science because it encourages researchers to better
understand and account for treatment selection biases; can offer insights into the plausibility of conventional
point-estimate approaches; could reduce the problem of advocacy in science; might be easier for stakeholders
to agree on a bounded estimate than a point estimate where impacts are contentious; and requires only basic
arithmetic skills.

Keywords: adaptive management, evidence based, impact evaluation methods, invasive species, sustainability
science

Mejoŕıa de la Credibilidad y la Transparencia de las Evaluaciones de Impacto de la Conservación a través de la
Estrategia de Identificación Parcial

Resumen: El reto fundamental de la evaluación del impacto de las intervenciones de conservación es
que los investigadores deben estimar la diferencia entre el resultado después de que una intervención ha
ocurrido y entre cuál habŕıa sido el resultado sin la intervención (contrafactual). Ya que lo contrafactual es
inobservable, los investigadores deben hacer la suposición incontrastable de que todas las unidades (es decir,
organismos o sitios) que no estuvieron expuestas a la intervención pueden ser usadas como sustituto de lo
contrafactual (control). La estrategia convencional consiste en hacer un estimado puntual (p. ej.: un número
único más un intervalo de confianza) del impacto usando la regresión, por ejemplo. Los estimados puntuales
proporcionan conclusiones poderosas, pero en contextos no-experimentales dependen de suposiciones fuertes
sobre lo contrafactual, y estas generalmente carecen transparencia y credibilidad. Una estrategia alternativa,
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llamada identificación parcial, consiste en primero estimar cuáles seŕıan los ĺımites contrafactuales si se
hicieran las suposiciones más débiles posibles. Después, se reducen los ĺımites al usar suposiciones robustas
pero créıbles basadas en el entendimiento de por qué fueron seleccionadas las unidades para la intervención y
cómo podŕıan responder a ella. Aplicamos esta estrategia y la comparamos con las estrategias convencionales
al estimar el impacto de un programa de conservación que eliminó a los árboles invasores en una parte de la
región floŕıstica del Cabo. Incluso cuando usamos nuestro estimado de impacto de identificación parcial más
grande, los costos del programa control fueron 1.4 veces mayor que el estimado previamente. La identificación
parcial es prometedora para la ciencia de la conservación pues alienta a los investigadores a entender de
mejor manera y a tomar en cuenta los sesgos en la selección de tratamientos; puede ofrecer entendimiento
de la credibilidad de las estrategias convencionales de estimación puntual; podŕıa reducir el problema de la
defensa en la ciencia; podŕıa facilitarle a los accionistas el acordar sobre un estimado limitado en lugar de
un estimado puntual en el que los impactos son polémicos; y requiere solamente de habilidades aritméticas
básicas.

Palabras Clave: basado en evidencia, ciencia de la sustentabilidad, especies invasoras, manejo adaptativo,
métodos de evaluación de impacto

Introduction

Despite growing demands for evaluations of the im-
pacts of conservation interventions, credible evidence
of impacts is still scarce (Pattanayak et al. 2010; Miteva
et al. 2012). There is limited understanding of how
policy actions unfold to influence behavioral change
at any point in the policy cycle and how changes on
the ground take place (Vedung 1997; Bell et al. 2011).
Failure to document what conservation policies work
when and why they work has important implications
for the dynamics of the conservation policy cycle and
ultimately what impact scarce conservation funds have.
We describe an approach that addresses the challenge
of assessing impacts of conservation interventions in
nonexperimental contexts and contributes to ongoing
discussions on how impacts should be estimated that
inform conservation policy and practice (Baylis et al.
2015).

To measure impact, researchers must compare the
outcome after the intervention has occurred with the
outcome had it not taken place (the counterfactual)
(Ferraro 2009; Angrist & Pischke 2015). For example,
the effect of an intervention to control invasive species
would be the difference between invasive species
presence after the removal treatment (Fig. 1, panel
1c) and what invasive presence would have been if
removal had not occurred (Fig. 1, panel 1b). Because
the counterfactual is unobservable, researchers have to
assume that outcomes from a comparison or control
group that was not exposed to the intervention can be
used as a surrogate for the counterfactual outcome (e.g.,
Fig. 2, panel 1b). Thus, the credibility of estimates of
conservation impacts weighs heavily on the plausibility
of an untestable assumption about the counterfactual.

The most credible and widely used setup to make
counterfactual estimates is a randomized experiment.
A researcher randomly assigns the intervention to a
group of units (e.g., organisms or sites) that receives

the treatment and a control group (the counterfactual
surrogate) that does not. Given randomization of the
treatment, the 2 groups will be, in expectation, similar,
with the only difference being that one group is treated
and the other is not. There is no bias in treatment
assignment (assuming perfect compliance); thus, any
difference between the outcomes of the 2 groups can
be causally attributed to the treatment or to sampling
error. The difference in mean outcomes between the 2
groups provides a point estimate of impact (i.e., a single
number along with a confidence interval).

Despite the power of randomization, most conserva-
tion programs will have limited ability to use random
assignment as part of program implementation. In non-
experimental contexts, researchers have to make far
stronger, and hence less credible, assumptions about
the counterfactual if they seek a point estimate of the
causal effect of the program (Manski & Nagin 1998;
Manski 2011); Instead of relying on random assignment,
researchers have to select a comparison group based
on in-depth knowledge about treatment assignment and
systematically account for selection biases (i.e., why
some units were treated and others were not [Ferraro
& Hanauer 2014]).

An alternative approach, called partial identification
(PI), can be used on its own (Hazzah et al. 2014) or in
combination with conventional point-estimate methods
(e.g., Arriagada et al. 2012; McConnachie et al. 2015).
The method sequentially explores the implications of
different assumptions on the range of counterfactual
outcomes, increasing the strength of the assumptions
and assessing how each assumption choice affects the
range of impact estimates (the identification region)
(Manski 2007). To demonstrate the approach, we
assessed the effectiveness and cost-effectiveness of the
nonexperimental Working for Water (WfW) program.
This program seeks to protect ecosystem services and
biodiversity by controlling invasive alien trees in a region
of South Africa (van Wilgen et al. 1998).
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Figure 1. Hypothetical example of the problem of
measuring conservation impacts: (a) before and (b)
after invasive trees are (c) removed (treated). In panel
1, the invasive tree is removed from the study units
and in panel 2 the invasive trees are not removed.
Each panel shows 2 potential outcomes: Y0, not
treated (i.e., invasive trees not removed), and Y1,
invasive tree removed. The smaller younger trees in
panels 1 and 2 (B) spread from the larger older trees
in 1987 (bottom graphs in [a] and [b]).

Methods

Case Study Background

WfW is a national public works program that employs
poor South Africans to remove invasive plants (https://
www.environment.gov.za/projectsprogrammes/wfw).
Established in 1995, the program is arguably the
world’s most ambitious invasive plant control program
(Keonig 2009) and Africa’s largest conservation and
development initiative with an annual budget of over
US$50 million (van Wilgen et al. 1998). Despite the
program’s magnitude, little is known about its impact
(McConnachie et al. 2012, 2013).

We focused on alien tree removal activities within a
large (1451 km2) mountainous area of the Cape Floris-
tic Region (CFR) (Fig. 2). The predominant vegetation
type is fynbos, a fire-prone shrubland that is suscepti-
ble to invasion by fire-adapted invasive trees, even in
the absence of human disturbance. Fynbos areas covered
by invasive trees consume more water than unoccupied
fynbos, resulting in a reduction in water availability (Le
Maitre et al. 1996). The CFR contains over 9000 plant
species (6210 endemics). Invasion by alien trees is a ma-
jor risk to the flora, 3087 plant taxa (2972 endemics)
are of conservation concern and 1736 taxa (1690 en-
demics) are in danger of extinction (Raimondo et al.
2009).

In the study area, the long-term goal of WfW is to re-
store the cover and composition of native fynbos plant
species and in so doing to increase water run-off and re-
duce threats to biodiversity conservation. These goals are
achieved by first felling invasive trees and then destroying
young regrowth with herbicide spray applications while

relying on passive recovery of native vegetation (Holmes
et al. 2008). If the young regrowth is not treated be-
fore it is approximately chest height, it has to be refelled
through costly mechanical clearing methods. Timely and
effective follow-up treatments are therefore vital for the
long-term success of the program (McConnachie et al.
2012).

Data

We used presence and absence data on invasive trees
in cell units of 20 × 20 m for the years 1987 (before
WfW) and 2010 (after WfW) for all the units in the study
area (N = 3.70 million cell units) (Fig. 2 and Table 1).
We classified units as treated if they intersected the pro-
gram’s treatment management areas. The management
areas comprised about 31.9% of the study area. Treat-
ment records began after 2000 when most of WfW’s
activities started. Some removal activities, for which we
had no records, were carried out by other agencies be-
fore when WfW treatments began in the 1990s after the
1987 baseline estimate. We knew that most of these
unrecorded activities were located on untransformed
protected-area land and state-plantation areas that were
abandoned and subsequently cleared in the 1990s (Louw
2004). These were mostly areas that WfW later also
treated (see treated–untreated covariate balance statis-
tics in the Supporting Information). Where relevant, for
each estimator we discussed how this could result in the
treatment effect of WfW being overestimated or the in
the case of PI how it could be used to bound impact
estimates. Total treatment costs (in South African rands
[ZAR]) from 2000 to 2010, including project management
costs, were drawn from treatment management data. To
account for inflation (approximately 6% per annum), we
adjusted all costs to 2014 ZAR. Cost-effectiveness was
calculated by dividing the total treatment costs by the
reduced area of invasive trees attributable to the WfW
intervention.

Defining Conservation Impact

We estimated the difference between observable ex-
pected outcomes of treated units and the unobservable
expected outcome of these units had they not been
treated. In the terminology of impact evaluation, this im-
pact is called “the average treatment effect on the treated”
(ATT). The ATT is a common type of impact evaluated in
nonexperimental studies (see Ferraro & Hanauer [2014]
for other types of impact estimates). In the context of
WfW, the expected outcome of the treated group was
the expected percentage of units occupied by invasive
trees in 2010 for units treated by WfW. The expected
counterfactual outcome was the expected percentage of
invaded units had these treated units not been treated
(Fig. 1).
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Figure 2. Invasive tree presence marked (dark grey) in 1987 and 2010 in the study area in South Africa’s Western
Cape Province (inset). Working for Water management areas are marked by large light grey polygons in the main
maps and dark grey in the inset.

Table 1. Percentage of study area cell (20 × 20 m) units occupied
by invasive trees in treated and untreated units in 1987 and 2010,
before and after the implementation of Working for Water in 2000,
respectively.

∗

Untreated Treated
∗

Total
Year (SD) (SD)

∗
(SD)

Before 1987 8.75 (28.25) 8.19 (27.42) 8.57 (28.00)
After 2010 8.33 (27.64) 2.87 (16.70) 6.63 (24.88)
Total 8.54 (27.95) 5.53 (22.06) 7.6 (26.44)

∗
Treatment management areas represented 31.9% of the total study

area which covers 1451 km2.

In Fig. 1, panel 1a shows 9 hypothetical units in the
study area in the year 1987 that were eventually treated
(hereafter denoted D = 1) sometime between 2000
and 2010. In 1987, the units had 2 potential outcomes
in terms of percentage of units occupied by invasive
trees: the potential outcome if the treatment were to
happen (panel 1c, hereafter Y1

2010) and the potential
outcome were it not to happen (panel 1b, hereafter
Y0

2010). Therefore, the ATT in this graphical example

is the expected difference between these 2 potential
outcomes for the population of treated units (i.e., panel
1c minus panel 1b):

ATT = E [s
(
Y 1

2010 − Y 0
2010

) |D = 1]

= (0/9 − 5/9) × 100 = −56%.

Only (Y1
2010| D = 1) (panel 1c) is observable, from

which we can estimate E[(Y1
2010| D = 1)]. The expected

outcome if panel 1a were not treated, E[(Y0
2010| D = 1)],

is an unobservable counterfactual (panel 1b). To estimate
this expected outcome, one has to make the untestable
assumption that the outcome from a comparison group,
drawn from units that were not treated (e.g., panel 2b), is
a surrogate for the counterfactual outcome of the treated
units. Alternatively, a researcher could also model the
counterfactual as discussed below (see “Discussion”).

PI of Impact and Conventional Approaches

We bounded impact estimates with the PI approach,
starting with no assumptions (approach 1) and then
adding assumptions about the counterfactual outcome
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(monotone treatment selection and response, ap-
proaches 2 and 3, respectively). We also considered
some conventional point-estimate approaches and their
related assumptions: modeling counterfactual outcomes
(approach 4), naive treated–untreated comparison (ap-
proach 5), before–after treatment comparison (approach
6), before–after-control-intervention comparison (BACI)
(approach 7), and conditioning (approach 8). We as-
sessed how credible it would be to make the assump-
tions of conventional point-estimate approaches given
the available data. For each approach, we also determined
how the strong assumptions used to make the respective
point estimates can be relaxed to make more credible
bounded estimates.

A summary of assumptions and estimates of the PI and
point-estimate approaches are provided in Table 2 and
Fig. 3. We did not include measures of sampling vari-
ability (confidence regions) for the PI bounds because
we used a population estimate. Confidence regions for
PI bounds can be calculated in R and other statistical
software (Imbens & Manski 2004).

Results

No Assumptions for PI

As an estimator of E[(Y1
2010| D = 1)], we used the average

percentage of treated units occupied by invasive trees
in 2010: 2.87% (Table 1). Without making any assump-
tions about the unobservable expected counterfactual
outcome E[(Y0

2010| D = 1)], we knew that it could be
no higher than 100% (all units would be occupied had
WfW not intervened) and no smaller than 0% (no units
occupied even if WfW had no intervened). Therefore,
with these 2 extreme values, we bounded our ATT esti-
mate within an identification region with the following
lower (i.e., best program WfW impact that leads to the
greatest possible invasive tree reduction compared with
the counterfactual, hence negative value) and upper (i.e.,
worst program impact compared with the counterfac-
tual) bounds:

E
[(

Y 1
2010 − Y 0

2010

) |D = 1
] ≤ ATT

≤ E
[(

Y 1
2010 − Y 0

2010

) |D = 1
]

(2.87 − 100) ≤ ATT ≤ (2.87 − 0)

−97.13% ≤ ATT ≤ 2.87%. (1)

By having only knowledge of average percentage of
treated units occupied by invasive trees, it was possible
to narrow the interval width from 200 percentage
points without any information (i.e., [−100, 100]) to no
greater than 100 percentage points (i.e., [−97.13, 2.87])
(Table 2). The lower-bound (value on the left) implies that
WfWcaused a 97.13% reduction in invasive tree presence.

The upper-bound implies that WfW caused an increase in
invasive tree presence (i.e., implying that, after clearing
the units, invasive trees spread faster than they would
have if the units had not been cleared) (also see Fig. 3).

Monotone Treatment Selection Assumption for PI

The monotone treatment selection assumption (MTS;
Manski & Pepper 2000) is that either positive or negative
treatment-selection bias is stronger between the treated
and untreated units. Negative selection implies treatment
is assigned to units that, in the absence of treatment,
have lower levels of invasion, on average, than untreated
units. Positive selection implies the opposite relationship
between treatment and potential outcomes in the
absence of treatment. In some conservation contexts,
one can make a credible assumption about the likely
direction of selection based on a strong understanding of
program implementation; specifically, an understanding
of why some units were selected for treatment by the
program and others were not (e.g., Arriagada et al. 2012;
McConnachie et al. 2015). Factors that cause selection
bias (i.e., jointly affect the probability of being treated
and the outcome in the treatment’s absence) are called
confounder variables (Angrist & Pischke 2015).

In our study area, negative selection is plausible. The
WfW program in the study region targets untransformed
natural areas because of the greater chance of native
plant recovery (Holmes et al. 2008) and greater associated
expected prevention of native biodiversity loss (Higgins
et al. 2001). We know from studies (e.g., Rouget et al.
2003) that higher levels of invasion are associated with
human transformed areas that WfW tends to avoid (for
empirical patterns consistent with negative selection, see
the covariate balance statistics between the character-
istics of treated and untreated units in the Supporting
Information). The invasive tree presence in 1987 offered
support for this assumption: invasive tree presence was
lower on treated than untreated units before the treat-
ments happened (Table 1). In addition, we knew that
most of the pre-WfW clearing activities were located on
WfW treated units. Therefore, the true pretreatment in-
vasive tree presence on treated units is likely to be lower
than the 1987 baseline presence.

The assumption of negative selection implies that
the expected unobservable counterfactual outcome of
treated units is no higher than the observable expected
outcome on untreated units, that is E[(Y0

2010| D = 1)] �
E[(Y0

2010| D = 0)]. Using observable data from untreated
units, we estimated E[(Y0

2010| D = 0)]: 8.33% (based
on results in Table 1). Making the plausible assumption
of negative selection in the WfW program drastically
reduced the lower-bound of the ATT from −97.13 to
−5.46:

− 5.46% = (2.87 − 8.33)

≤ ATT ≤ (2.87 − 0) = 2.87%. (2)
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Table 2. Summary of approaches used to estimate the impact of the Working for Water project on the reduction of invasive trees.a

Approach Assumptionb
Assumption

illustrated (Fig. 1)c

Identification
region (estimate
bounds) Advantages Disadvantages

1. No assumptions 100 � (Y0
2010| D =

1) � 0
100 � panel 1b � 0 [−97.13, 2.87] only use data, very

robust
wide range

2. Monotone
treatment selection
(− or + selection
bias)

(Y0
2010| D = 1) � or

� (Y0
2010| D = 0)

panel 1b � or �
panel 2b

[−5.46, 2.87]d or
[−97.13, −5.46]

credible
assumptions

range can be wide
and includes
positive or
negative ATT

3. Monotone
treatment response

ATT � or � 0 panel 1b � panel 1c [−97.13, 0]d

or [0, 2.87]
credible

assumptions
range can be wide

4. Model
counterfactual
spread

(Y0
2010 | D = 1) =

(Y0
1987| D = 1) ×

3.75% or 20.6%
annual spread

panel 1b = panel 1a
× assumed spread
rate

−16.3 or −605.6% precise estimate,
allows for
temporal changes

could overestimate
spread

5. Treated–untreated
comparison

(Y0
2010 | D = 1) =

(Y0
2010| D = 0)

panel 1b = panel 2b −5.46 precise estimate seldom plausible

6. Before–after
treatment
comparison

(Y0
2010 | D = 1) =

(Y0
1987| D = 1)

panel 1b = panel 1a −5.32 precise estimate no possible
temporal changes

7. Before–after
control
intervention

[(Y0
2010 – Y1987) | D

= 1] = [(Y0
2010 –

Y1987) | D = 0]

(panel 1b – panel 1a)
– (panel 2b – panel
2a)

−4.9% can control for
some
time-invariant
confounders

cannot adjust for
time-variant
confounders

8. Conditioning
approach

(Y0
2010 | D = 1, X) =

(Y0
2010| D = 0, X)

panel 1b = panel 2b
if confounders
balanced (e.g.,
1a = 2a)

−2.8% can control for
observable
confounders

cannot control for
all unobservable
confounders

aThe first 3 rows use bounded estimates and are therefore called partial identification approaches. The remaining rows present conventional
point-estimate approaches that depend on stronger but less credible assumptions.
bKey: Y0 and Y1 are the potential outcome if treated or not, respectively; D = 1 or 0 if actually treated or not, respectively; ATT is the average
treatment effect on units that were actually treated, and X represents a set of confounders.
cThe (a) and (b) refer to parts of Fig. 1.
dIdentification region we think is most plausible based on approaches 2 and 3.
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Figure 3. Approaches ordered by the strength of their assumptions used to estimate the impact of efforts by
Working for Water to reduce invasive tree presence. Cost-effectiveness of these actions is in parentheses (ZAR per
reduced hectare of invasive trees, 10 ZAR = 1 US$, all costs adjusted to 2014 ZAR).
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Two sources of positive selection could undermine
our MTS assumption. First, WfW usually avoided treating
areas far from roads and at high altitudes, which are areas
that are less accessible and thus typically less invaded.
Second, WfW may have targeted riparian areas because
invasive trees consume more water (Holmes et al. 2008).
Riparian areas could also be more invaded. But for our
MTS assumption to be violated, these 2 potential sources
of positive selection would have to be stronger than
the well-known sources of negative selection described
above. In our study site, the difference between the ac-
cessibility and proportion of riparian areas in the treated
and untreated groups was not large enough to affect in-
vasive tree presence (Supporting Information); thus, we
believe it is plausible to make a negative selection MTS
assumption.

Monotone Treatment Response Assumption for PI

The monotone treatment response (MTR) (Manski & Pep-
per 2000) assumption states that the treatment has either
a positive effect on outcomes for all units (impact is zero
or positive) or a negative effect. This assumption implies
the ATT impact estimate can be greater or less than zero.
In our study area, it might be plausible to assume that
the effect of WfW on a given unit cannot be positive
(i.e., clearing invasive trees would not cause any unit
to become occupied by invasive trees). This assumption
resulted in the lower bound on the left (best possible
program performance) of the ATT shifting from 2.87 to
zero. The new range based on only the MTR assumption
was

− 97.13% = (2.87 − 100) ≤ ATT

≤ (2.87 − 2.87) = 0%. (3)

Combining the negative MTS and MTR assumptions
yielded the following bounds on the ATT: -5.46% � ATT
� 0%.

Our MTR assumption would be implausible, if for ex-
ample, clearing of nonnative trees had the perverse effect
of creating favorable conditions for the establishment of
more and potentially new invasive nonnative species that
were impossible to control.

Modeling Counterfactual Outcomes for Point Estimation

Some conservation studies model the expected
counterfactual outcome based on modeling assumptions
about what would have happened in the absence of the
treatment from the pretreatment outcome state (e.g.,
McConnachie et al. 2012). In our case, calculating the
counterfactual outcome involved setting the baseline
invasion based on data from 1987 (i.e., Y0

1987| D = 1)
and then multiplying it by an annual spread rate from

1987 till 2010, which would give the counterfactual
outcome in 2010 (Y0

2010| D = 1). We derive the spread
rate from prior research (Higgins, Richardson, & Cowling
2000; Moeller 2010): estimated spread rates between
3.75% and 20.6%. Using these respective spread rates
and assuming this counterfactual spread rate holds over
23 years, the ATT equaled

ATT3.75%spread per annum = [(2.87) − (8.19′3.75%23)]

= −16.3% and

ATT20.6%spread per annum = [(2.87) − (8.19′20.6%23)]

= −605.6%. (4)

Modeling the counterfactual in this way yielded sub-
stantially larger estimates of WfW impacts than were de-
rived using the PI approach and an MTS assumption of
negative selection. Assuming higher spread rates made
the difference in the 2 estimates even larger. If one be-
lieves the rather weak MTS assumption, these modeling
estimates are not credible in our study area. The most
likely reason invasive trees did not spread as rapidly as
the modeled estimate is that other studies assessed spread
in the absence of any clearing, whereas in our study area
other clearing took place.

Naive Treated–Untreated Comparison for Point Estimation

Unlike the modeling approach, the näıve treated–
untreated comparison approach uses data on untreated
units as a surrogate for the expected outcome in the
absence of treatment for treated units. It assumes there
is no treatment selection bias. In other words, the coun-
terfactual expected outcome is assumed to be the same
as the expected outcome on untreated units: E[(Y0

2010|
D = 1)] = E(Y0

2010| D = 0)]. This assumption allows one
to make an impact estimate by simply subtracting the
average outcome on untreated units from that of treated
units.

Using observable data on untreated units (Table 1), we
estimated E(Y0

2010| D = 0)] = 8.33%. The resulting point
estimate for the ATT was

ATTE
(
Y 1

2010 − Y 0
2010|D = 1

)

= (2.87 − 8.33) = −5.46%. (5)

The assumption that E[(Y0
2010| D = 1)] = E(Y0

2010|
D = 0)] is very strong and usually impossible to jus-
tify in nonexperimental contexts because it implies that
treatment assignment is equivalent to random assignment
(Ferraro & Hanauer 2014). We expected to see nega-
tive treatment selection. Thus, rather than using this ap-
proach to generate a point estimate of the ATT, it was
more plausible to view it as a lower bound (as derived in
approach 3, MTS assumption).
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Before–After Treatment Comparison for Point Estimation

This approach assumes that, in the absence of treatment,
the expected outcome is the same as it is pretreatment,
which allows one to make an impact estimate by simply
subtracting the average outcome on treated units before
and after treatment. The no-change assumption assumed
the counterfactual outcome (e.g., panel 1b, Fig. 1) was
the same as before the intervention was implemented
(e.g., panel 1a, Fig. 1), that is: E[(Y0

2010| D = 1)] =
E[(Y0

1987| D = 1)]. Using data from Table 1, E[(Y0
1987| D

= 1)] = 8.19%. Therefore, the point estimate of the ATT
was

ATT E
(
Y 1

2010 − Y 0
1987

) |D = 1

= (2.87 − 8.19) = −5.32%. (6)

In most conservation cases, the no-change assumption
is difficult to justify. In our case, we expected the percent-
age of units occupied by nonnative trees to decline from
1987 to 2010 even in the absence of the WfW program
because many nonnative tree plantations in the area were
abandoned and clear-cut in the 1990s before our treat-
ment records began. These plantations made up a sizable
fraction of the pretreatment, nonnative tree population
in the study area.

More sensibly, relative to using the no-change assump-
tion to make a point estimate, we used the no-change
assumption to narrow the lower bound of our PI region
from −5.46% (based on approach 3, MTS assumption) to
−5.32% as calculated above. We therefore made the more
credible but weaker assumption that the counterfactual
outcome is not greater than the pretreatment outcome
on treated units (8.19%).

BACI Comparison for Point Estimation

Also called differences in differences, the BACI approach
uses changes over time in the untreated group outcome
variable (from pre- to posttreatment) to adjust treatment
group changes that would have happened in the absence
of treatment; the net change is attributed to the treat-
ment (or sampling error). By assessing changes instead
of levels (e.g., approaches 5 and 6), researchers hope
to eliminate fixed (time invariant) differences that might
otherwise confound impact estimates. For example, a
possible confounding factor in our case study was that
WfW favors treating state protected land. These areas are
less disturbed and invaded than other land ownership
types and hence would be less likely to be invaded in
the absence of the treatment (Supporting Information).
If the effect of this confounder does not change over
time, then it can potentially be eliminated by controlling
for pretreatment differences in the outcome variable.

The key assumption is that expected change in pre-
and posttreatment outcomes for both groups is the same

in the absence of treatment (i.e., they move in parallel;
called the equal trends assumption): E[(Y0

2010–Y0
1987) |

D = 1] = E[(Y0
2010–Y0

1987) | D = 0]. To calculate the
ATT, average pre and posttreatment expected outcomes
are first subtracted from one another for treated and un-
treated groups. These values indicate respective average
changes in the outcome variable for the 2 groups. Second,
the resulting group changes are subtracted from one an-
other. For example in Fig. 1, the approach was calculated
as follows: (panel 1c - panel 1a) – (panel 2b - panel 2a). In
our case study, the ATT was calculated as follows (with
values from Table 1):

ATT E
[
(Y 1

2010 − Y 0
1987)|D = 1

]

−E
[
(Y 0

2010 − Y 0
1987)|D = 0

]

= (2.87 − 8.19) − (8.33 − 8.75) = −4.9%. (7)

The equal trends assumption depends on 4 strong but
often ignored assumptions, some of which also apply
to other approaches (Ferraro & Miranda 2014). First,
the treatment effect is assumed to be additive and con-
stant (homogenous). This assumption was difficult for
us to make because the treated and untreated groups
had different levels that likely moderate the treatment
effect (Supporting Information). For example, treated
areas have a higher proportion of units located in un-
transformed land, and units with more untransformed
land likely have higher treatment effects (i.e., treatment
effects are not constant for all units). Second, the func-
tional form is assumed linear. Like the additive treatment
effect assumption, this assumption is difficult to make
when confounders are imbalanced between treated and
untreated units. Furthermore, in most conservation con-
texts it is difficult to assume that changes over time will
be linear. Third, treatment assignment is assumed to be
correlated only with fixed characteristics of the land units
rather than time-varying characteristics, such as lagged
presence of invasive species. Fourth, units respond in
the same way to common time shocks. Consequently, we
contend the BACI approach is more credible as a lower-
bound estimate than a point estimate. Thus, the lower
bound (biggest possible reduction) of the ATT increased
from −5.46% (with approach 2, MTS PI assumption) to
−4.9%.

Conditioning for Point Estimation

Conditioning (e.g., regression or matching methods) is an
approach used to account for confounding factors when
all confounders can be observed and measured (while
approach 7 is usually used when some confounders are
unobservable but time invariant). Conditioning works by
reweighting the untreated units to select a counterfac-
tual from untreated units that, on average, is balanced in
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the distribution of observable confounding factors. This
assumption can be formally defined as (Y0

2010 | D = 1,
X) = (Y0

2010| D = 0, X), where X is the set of confound-
ing characteristics. Conditioning implicitly assumes that
unobservable confounders do not exist or are perfectly
correlated with X (Ferraro & Hanauer 2014).

In our case study, observable confounders fell into
5 major categories. The first 2 were related to land own-
ership and land use (related to preference for working
on state protected land that was untransformed, which
as mentioned is typically less invaded). The next category
included covariates related to the presence and density
of invasive trees before treatment. We knew the program
tended to treat less dense invasions because they were
expected to pose the greatest spread risk (Higgins et al.
2001). The next categories, discussed above, were related
to accessibility and where invasive trees grow.

To control for these confounders, we used a matching
method in R (Sekhon 2011). With the data in Table 1,
we chose a matching algorithm that gave us the best bal-
ance: a genetic search optimization algorithm (Diamond
& Sekhon 2005) with 1-to-1 matching with replacement.
Based on this step, the counterfactual estimate, (Y2010

0 |
D = 1, X), equaled 5.5%. The resulting ATT was

ATT E
[(

Y 1
2010 − Y 0

2010

) |D = 1), X
]

= (2.7 − 5.5) = −2.8%
(
S E 0.8, p = 0.001

)
. (8)

If after matching there were still differences in the
pretreatment values (e.g., invasive tree presence), the
conditioning assumption was less credible. In such
situations, the program evaluation literature suggests
doing a BACI (approach 7) on the matched sample
(Ho et al. 2007). The BACI equal-trends assumption
combined with the conditioning assumption would
therefore be a weaker and thus more credible assumption
than either assumption alone. In our study, there was
no difference between the conditioning estimator and
the BACI estimator derived from the matched sample
because the average pretreatment invasive tree presence
value (7.8%) was the same for the treated and matched
control units (Supporting Information). Therefore, the
ATT had the same value as above: ATT = E[(Y1

2010–
Y0

1987) | D = 1] - E[(Y0
2010–0

1987) | D = 1, X] = (2.87 −
7.8) − (5.5 − 7.8) = −2.8% (SE 0.8, P = 0.001).

One of the major problems that can undermine the con-
ditioning assumption is that it is difficult to know which
and how many confounders to control. With smaller sam-
ples only a few confounders can be included, and even
for larger samples it can be difficult to find valid coun-
terfactuals (i.e., sufficient balance) for a large number of
confounders (King & Zeng 2006).

However, the strong assumptions of the conditioning
approach, or any of the other conventional approaches
(4)–(8), are not essential. With the PI approach, one can

still draw policy-relevant conclusions without having to
invoke strong and often less believable assumptions.

Discussion

Deciding What Combination of Assumptions to Maintain

We have shown how the identification of conservation
impact does not have to be an all-or-nothing endeavor.
Using PI, researchers and practitioners can make
valuable inferences even if the comparison group is not
a good surrogate for the counterfactual, as is required
for conventional point-estimate approaches. In our
case study, when we combined the MTR and MTS
assumptions (2 and 3), the identification region for
the ATT was [−5.46%, 0%] (Fig. 3). The fact that the
conditioning estimate (assumption 8) fell within this
region strengthens our confidence in the identification
region and provides some evidence that the intervention
had an impact. Previous studies estimated that it will cost
the program at most ZAR10 310 per reduced hectare of
invasive trees (Marais & Wannenburgh 2008, adjusted
for inflation to 2014-value ZAR). Even when we used the
lower bound PI MTS assumption estimate of −5.46%, the
resultant cost-effectiveness estimate was still 1.4 times
more costly (Fig. 3). Therefore, without having to use
strong assumptions, like those used to make the point
estimates, we could make a policy-relevant estimate.

Opportunities for Using PI in Conservation Science

We demonstrated how PI, used alone or in combina-
tion with conventional point-estimate approaches, offers
6 distinct opportunities for improving the transparency
and credibility of nonexperimental conservation impact
evaluations. First, it encourages researchers to focus on
the most important aspects of nonexperimental impact
evaluations: the understanding of why some units are ex-
posed to an intervention and how selection bias can be ac-
counted for. Research in conservation science could ben-
efit from focusing less on statistical modeling methods
(e.g., maximizing the precision of estimates) and giving
more attention to designs that reduce bias (Armsworth
et al. 2009). Second, PI can be used to assess the plau-
sibility of conventional point-estimate approaches and
to detect estimates that fall outside the PI bounds es-
tablished with no assumptions. For instance, both the
modeling assumption estimates fell far outside possible
bounds. Third, proper use of PI could help reduce the
problem of advocacy in science, in which researchers
are tempted to select assumptions that fit the conclu-
sions they want (Manski 2011). Presentation to policy
makers with a menu of assumptions and attached con-
clusions (Fig. 1) empowers researchers to better act as
honest brokers, although there is always the risk that
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decision makers will push actions they already find more
attractive (Weiss 1979). Fourth, when conservation im-
pacts are contentious, it might be more amenable for
discussions on resource management options to have
stakeholders recognize and agree on bounded estimates
than on single number point estimates (e.g., Manski
& Nagin 1998). Fifth, because PI requires only basic
arithmetic skills and knowledge of the intervention con-
text, it could be a valuable tool for researchers and
managers who do not have the capacity to use more
technically intensive statistical methods such as match-
ing methods. The possibility of incorporating existing
knowledge into deciding which assumptions to make
about the counterfactual opens doors for transparent and
rich interactions among conservation researchers and
practitioners.

The design of more effective conservation policies and
interventions demands that communities of researchers
and practitioners efficiently formalize lessons learned
from the past. The definition and framing of what con-
stitutes conservation success is an ongoing process that
would benefit from more timely discussions facilitated by
approaches such as PI.
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