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A B S T R A C T

Successful decision-making for environmental management requires evidence of the performance and efficacy of
proposed conservation interventions. Projecting the future impacts of prospective conservation policies and
programs is challenging due to a range of complex ecological, economic, social and ethical factors, and in
particular the need to extrapolate models to novel contexts. Yet many extrapolation techniques currently em-
ployed are limited by unfounded assumptions of causality and a reliance on potentially biased inferences drawn
from limited data. We show how these restrictions can be overcome by established and emerging techniques
from causal inference, scenario analysis, systematic review, expert elicitation, and global sensitivity analysis.
These technical advances provide avenues to untangle cause from correlation, evaluate and transfer models
between contexts, characterize uncertainty, and address imperfect data. With more rigorous projections of
prospective performance of interventions, scientists can deliver policy and program advice that is more scien-
tifically credible.

1. Introduction

Reliable evidence of future performance and efficacy of interven-
tions is a critical component of successful decision-making for en-
vironmental management (Ferraro and Pattanayak, 2006; Rissman and
Smail, 2015). Examples of such decision-making include achieving
global protected area targets (Visconti et al., 2015), designing new
national-level payments for ecosystem services programs (Bryan et al.,
2014), and controlling invasive species (Firn et al., 2015; Martin et al.,
2015). Yet determining future impacts of conservation interventions is
challenged by a range of complex ecological, economic, social and
ethical factors, as well as trade-offs between multiple objectives. In-
creasingly, scholars and practitioners are more systematically collating
and synthesizing existing literature on past impacts for use as an evi-
dence base in conservation (Sutherland et al., 2004). But making ac-
curate inferences from this relies on the quality of this evidence base.

Researchers and practitioners are also seeking to improve the quality of
this evidence by conducting more robust assessments of past policy
impacts through retrospective evaluations (Miteva et al., 2012; Pressey
et al., 2015; Baylis et al., 2016). These retrospective evaluations typi-
cally use principles of causal inference (Box 1), which focuses on
clarifying the assumptions needed to infer causal relationships from
data, and on reducing the bias of impact estimates (Miteva et al., 2012;
Meyfroidt, 2015; Pressey et al., 2015). This movement towards en-
hanced transparency and reduced bias is a response to the historical
deficiencies of retrospective policy evaluations in conservation science
(Ferraro and Hanauer, 2014; Meyfroidt, 2015; Baylis et al., 2016).

Yet when used to inform the design of conservation policies and
interventions, retrospective evaluations only tell half the story: pre-
dictions of expected outcomes are also necessary. While ‘improving
future policy and interventions’ is a commonly stated goal of retro-
spective analyses (Baylis et al., 2016), rigorous analysis of past
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outcomes alone is insufficient for this purpose. Evidence from past in-
terventions can be highly context-specific (Pfaff and Robalino, 2012),
and may not extrapolate to other times and areas (Sinclair et al., 2010;
Dobrowski et al., 2011; Cook et al., 2014; Oliver and Roy, 2015). Such
extrapolation is traditionally the domain of projection analyses: the use
of modelling to project intervention impacts across time and space.

If, in developing projections, analysts ignore the new insights and

methods of retrospective evaluations, the advice yielded by these pro-
jections will lack scientific credibility. Scientific credibility refers to the
plausibility and technical accuracy of the science. Implicit and untested
assumptions regarding causality limit the credibility of prospective
policy analysis, as associations observed in the past may not hold in the
future (Meyfroidt, 2015). Scientific credibility may also be limited if
projections rely on potentially biased inferences from limited data

Box 1
What is causal inference?

Causal inference is an analysis of the causal relationship between variables, for example the effect of a treatment on an outcome. It
distinguishes causation from association though clarifying and justifying the model assumptions required for its inference (Pearl, 2009).
While a range of techniques are used to infer causality, here we refer to the ‘counterfactual’ or ‘potential outcomes’ model, i.e. the Neyman-
Rubin Causal Model.

Causal inference is typically framed around a causal model: hypotheses regarding how a treatment affects an outcome, a description of
the causal pathway and possible mechanisms, confounders, and moderators (i.e. the causal model describes the structural assumptions). A
treatment is the variable that is hypothesized to cause the outcome of interest. Mechanisms are the path by which the treatment causes the
outcome (in some literatures, an intermediate node along this path is also termed a ‘mediator’). Confounders (or confounding factors) are
rival explanations: variables that are systematically associated with the outcome and the treatment or mechanisms along the casual
pathway. Confounders may result in an association between a treatment and an outcome that is not direct or causal, or alternatively could
mask a direct treatment effect. For example, because the selection bias in the location of protected areas, these areas are likely to experience
lower rates of deforestation regardless of whether they were protected or not. Naïve estimates that do not account for this selection bias can
severely overestimate protected area effectiveness (Joppa and Pfaff, 2009). It is particularly important to distinguish mechanisms and
confounders, as controlling for the influence of a mechanism will essentially remove the impact being sought, while controlling for the
influence of a confounding variable is advisable to reduce bias. A moderator is an interaction effect, a variable that affects the outcome of
the treatment, but not correlated with exposure to the treatment.

A challenge when framing a causal analysis is defining the counterfactual outcome: the unobserved outcome for a given unit (e.g., area,
species, individual), if the unit's treatment status were different from what is observed. For example in a protected forest we can observe
deforestation rates, but we cannot observe (counterfactual) deforestation rates should the same area of forest have instead remained
unprotected. The difference between a unit's actual state and its counterfactual state is the causal effect (the estimand) that we seek to
estimate (also called the treatment effect; Fig. B1). Experimental designs, such as randomized controlled trials, permit causal inference by
introducing variation in treatment assignment that is unrelated to potential outcomes. In other words, effective randomization eliminates
all rival explanations other than sampling variability, thus giving validity to the assumption that the counterfactual is well represented by
the ‘control’ sample. Where experimental designs are not feasible, quasi-experimental designs can approximate them, by identifying an
observable stand-in for the unobservable counterfactual (Fig. B1). Quasi-experimental designs rely on a strong understanding of how
treatment was assigned and on statistical techniques to control for confounding factors. These techniques include matching (to control
observable confounders) (Ferraro et al., 2011), use of panel data and synthetic controls (to control time-invariant unobservable con-
founders) (Jones and Lewis, 2015; Sills et al., 2015), instrumental variables, and discontinuity designs (to eliminate unobservable con-
founders).

Fig. B1 In treatments with a strong selection bias, for example the implementation of protected areas, several different treatment effects
may be of interest in impact evaluation. The Average Treatment Effect of the Treated (ATT) is often the sought-after estimand: the expected
difference between the observed and counterfactual outcome for the treated population only. As the counterfactual is unobservable, a
stand-in is assumed to represent this. The Average Treatment Effect on the Untreated (ATU) may also be policy relevant: the expected effect
of a treatment on the untreated population. In rare cases, the expected treatment effect on a randomly chosen unit from the population
(treated and untreated) may be relevant: this estimand is called the Average Treatment Effect on the Treated (ATE). This can be calculated
proportionally from ATT and ATU.
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(Miteva et al., 2012; Pressey et al., 2015), and which have an unclear
treatment of uncertainty or poor interpretation of potentially biased
results. These issues of untested assumptions, limited data, and im-
perfect use of this data are important for successful conservation deci-
sion-making: overestimation of benefits associated with proposed con-
servation interventions may lead to sub-optimal outcomes, whereas
underestimation of benefits may result in more effective options being
overlooked.

Here, we outline the relevance, benefits, and challenges of in-
tegrating into prospective evaluation of conservation interventions the
principles of causal inference and associated principles of systematic
literature review, expert elicitation, and scenario analysis. We discuss
how these established and emerging techniques can be employed to (1)
improve problem definition by clarifying causal assumptions, key
variables, alternative scenarios, and using appropriate model frame-
works, (2) improve model parameterization by identifying potential
bias in data, and avoiding these where possible, and (3) improve model
use and interpretation through analyses to understand model sensitivity
and parameter or model uncertainty. These techniques are designed to
encourage conservation scientists to use and interpret imperfect data
more effectively, thereby delivering policy and program advice that is
more scientifically credible, and, if heeded by decision-makers and
acceptable to stakeholders, capable of delivering improved conserva-
tion outcomes.

2. Problem definition: clarifying causal assumptions

2.1. Characterizing key variables in a causal context

A key challenge in creating robust and transparent model projec-
tions of conservation interventions is to define the problem. How is the
intervention expected to work within the environmental, social, and
economic context? To answer this question, models that depict me-
chanism-based, causal relationships between interventions, processes
and variables are developed, ideally explicitly and graphically (Pearl,
2009; Margoluis et al., 2013) (Box 2). Causal relationships between key
variables may be supported by a variety of evidence (Meyfroidt, 2015),
or be based on hypotheses. While defining the ‘treatment’ and ‘out-
come’ in a graphical model may appear trivial, there is a challenge in
explicitly identifying treatments and outcomes that are relevant across
a wide social and environmental spectrum (Meyfroidt, 2015; Pressey
et al., 2015). Graphical models are useful, especially when sufficiently
informative and detailed to enable elucidation of assumed causal im-
pacts through potentially complex causal pathways (Firn et al., 2015),
and characterize variables as confounding factors, mechanisms, and
moderators (see Boxes 1, 2) (Ferraro and Pressey, 2015; Meyfroidt,
2015; Pressey et al., 2015).

2.2. Establishing valid baselines and alternative scenarios

Projections aim to determine potential future impact; that is, the
difference between alternative future states, typically arising from a
‘baseline’ and alternative scenarios (Bryan et al., 2014; Bull et al., 2014;
Oliver and Roy, 2015; Visconti et al., 2015). Future scenarios are hy-
potheses of how a system may operate under different conditions or
assumptions; a set of functions and parameters that lead to potential
future states. Baselines are commonly set as a continuation of current or
historical conditions, or as a projection of the ‘most likely’ or ‘business
as usual’ scenario (Bull et al., 2014). In prospective analyses, predicting
impacts is more difficult than in retrospective analyses, as there is not
yet a ‘fact’ for scenarios to run counter to: future scenarios cannot be
directly observed. Therefore while retrospective analyses have an ob-
servable, factual case against which to compare constructed alternative
scenarios to, in prospective analyses both alternative scenarios and

baselines must be constructed through assumptions and narrative. Care
needs to be taken not to construct ‘straw man’ arguments (i.e. im-
possible or highly improbable scenarios) and thereby give the false
impression that a particularly positive or negative outcome is likely.
This does not mean that more qualitative descriptions of ‘futures’ (e.g.
Coreau et al., 2009) are not valuable, but rather emphasizes the need to
transparently communicate the assumptions of each scenario: as var-
iation in scenario definition can substantially change recommendations
(Bull et al., 2014; Visconti et al., 2015), robust prospective evaluation
requires clearly articulated, conscientious and defendable definitions of
baselines and alternative scenarios (Pressey et al., 2015; Visconti et al.,
2015). Ideally, projections should be analyzed over a set of scenarios
that (to some extent) approximates the full set of plausible states of the
modelled system, thereby accounting for relevant exogenous un-
certainties, discontinuities and dynamics of the system being modelled
(Bryant and Lempert, 2010; Kasprzyk et al., 2013; Kwakkel et al.,
2013). The evaluation of these scenarios informs not only the bounds
and mean impacts of specific treatments but also the regions in the
parameter space where relevant outcomes could be achieved (Gerst
et al., 2013; Lempert, 2013).

2.3. Choosing an appropriate model framework, given causal assumptions

Understanding and explicitly articulating the causal relationships
that are implicit within a model framework helps to explain the key
differences between different modelling approaches. Here, we illustrate
this idea using the Species Area Relationship (Box 2) as an example of
the causal assumptions underlying three types of models commonly
used in making future projections: (1) exploratory models with many
variables (i.e. ‘kitchen sink’ models), (2) ‘reductionist’ models, and (3)
‘all-cause’ models.

Exploratory (‘kitchen-sink’) models aim to identify associations be-
tween multiple variables and an outcome. Such models are useful for
hypothesis generation, and are commonly used in simple multiple re-
gression-type analyses. However, several assumptions often made by
simple regression analyses and other correlation-based procedures limit
the usefulness of these types of models in future projections. First,
causal effects among the predictors are not required, and therefore
describing correlates as drivers or determinants, and their coefficients
as effects or impacts, represents an often untested causal assumption
(Meyfroidt, 2015). Second, it is often implicitly assumed that there is no
specification error (no incorrect functional forms, or missing pre-
dictors), which can bias impact estimators from regression analyses in
potentially uncertain ways (Kline, 2015). Third, if models are para-
meterized based on correlation, rather than causation, there can be
little a priori confidence that these relationships remain constant when
projected (Oliver and Roy, 2015). This problem is demonstrated by the
poor performance of spatial and temporal projections of some species
distribution models based on bioclimatic correlates (Sinclair et al.,
2010; Dobrowski et al., 2011). While some effort is usually made to
select variables in exploratory studies based on a theoretical or em-
pirical understanding of the system, causal pathways need to be made
much more explicit within the design of the analysis to more robustly
infer causality (Gelman and Hill, 2006; Pearl, 2009; Ferraro and
Hanauer, 2014).

‘Reductionist’ models focus on reduced model complexity and are
common in retrospective causal inference analyses (particularly for
quasi-experiments to estimate ‘counterfactuals’) (Bollen and Pearl,
2013; Ferraro and Hanauer, 2014). A benefit is that they do not require
the full model to be specified: the focus is on developing a reliable
estimator of the effect of a specific cause, rather than estimating mar-
ginal impacts of all potential covariates (Ferraro and Pattanayak, 2006;
Ferraro and Hanauer, 2014). Potential covariates are not ignored: the
analysis focuses on controlling for covariates that affect both the
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outcome and exposure to the cause – in other words, confounding
variables. To exert such control, this type of analysis will often ‘match’
samples from treated and untreated populations to balance con-
founding covariates, and thereby limit the bias they may have on the
impact estimator (Jones and Lewis, 2015; Meyfroidt, 2015). Similarly,
the construction of a ‘synthetic control’ makes this approach practical
for assessing specific causal impacts of conservation interventions
where there is only one ‘treatment’ sample (Sills et al., 2015). The
emphasis on internal validity (the minimization of bias) in reductionist
models means care must be taken when projecting these estimates of
causal impacts to novel contexts: estimates are typically specific to
certain sub-populations (Box 3), though understanding what factors
moderate impacts can help refine projections across heterogeneous
contexts (Ferraro et al., 2011; Ferraro et al., 2015).

‘All-cause’ models embrace the complexity of a larger graphical

model framework, offering a practical compromise between regression
and reductionist models, and include developments that increase their
utility for making projections. All-cause models include structural
equation models (Shipley, 2002; Lamb et al., 2014), Bayesian Networks
(Martin et al., 2015; Pascual et al., 2016), and Structural Causal Models
(Pearl, 2009; Runge et al., 2015). Structural equation models inherently
describe a graphical model framework (Bollen and Pearl, 2013; Martin
et al., 2015). This allows structural equation models to incorporate
unobservable (latent) variables, tolerate uncertainty in the model pre-
dictors, and differentiate between direct and indirect effects of treat-
ments (Bollen and Pearl, 2013). They therefore offer a useful option for
developing elaborate causal models (Box 3). Bayesian Networks can
offer similar benefits and more easily incorporate alternative types of
information such as expert opinion (Pascual et al., 2016). Structural
equation models and Bayesian Networks typically assume the correct

Box 2
An illustration of causal models using the Species Area Relationship.

We illustrate different types of variables and models using the example of the Species Area Relationship (SAR) (Arrhenius, 1921). The SAR
is perhaps the most ubiquitous causal model to explain patterns in species richness, with over 21,000 papers citing it (Web of Science, July
2015). The ‘simple’ SAR model, which posits a positive relationship between habitat area and species richness, can underpin a prospective
evaluation of conservation intervention by assuming that some form of land-use change (e.g., establishment of a protected area) is the
‘treatment’ and a change in habitat area is the mechanism through which the treatment affects an ecological ‘outcome’ (Fig. B2). The SAR
has informed numerous aspects of conservation policy (Drakare et al., 2006) including biodiversity targets (Desmet and Cowling, 2004),
land clearing (Brooks et al., 2002), and incentive mechanisms such as payments for ecosystem services and REDD+ (Strassburg et al.,
2012). In cases where the SAR is used in prospective evaluations, most studies consider broad types of conservation actions, such as land-
use zoning (Brooks et al., 2002; Desmet and Cowling, 2004).

While the simple SAR model is elegant in its simplicity, this oversimplification means that the mechanisms through which projected
interventions are proposed to operate are not clear. Further, the model fails to recognize important moderators. Such applications are
therefore likely to systematically under or over-estimate impacts (He and Hubbell, 2011; Rybicki and Hanski, 2013). Several variables have
been proposed to influence the SAR (Rosenzweig, 1995; Drakare et al., 2006; Whittaker and Fernández-Palacios, 2007). Exploratory models
might frame these as ‘covariates’ of the ‘response’ variable (Fig. B2). However, these could be more explicitly characterized as ‘mechanisms’
through which the SAR operates (e.g. habitat heterogeneity, population size, immigration, and evolutionary processes including mutation,
selection, and drift); ‘confounders’ that may also cause changes in species richness, but for reasons independent of area (e.g. fragment
characteristics and edge effects, invasive or predatory species, differences in climate and disturbance regimes and anthropogenic impacts);
or ‘moderators’ that lead to variation in the SAR parameters (e.g. taxa, matrix permeability and habitability). These variables can mean
similar ‘treatments’, such as the establishment of protected areas, can have substantially different effects in different contexts (Ferraro et al.,
2011; Hanauer and Canavire-Bacarreza, 2015). While not all of these variables will be important in any specific context, the basic model
implies that there is no variation in mechanisms, moderators, or rival explanations across different proposed conservation interventions or
contexts (Fig. B2). Analyses which evaluate prospective interventions could be improved by greater consideration of these processes, or by
identifying specific on-ground conservation management actions, such as how invasive species might be managed (Firn et al., 2015).
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Fig. B2 Different modelling frameworks are appropriate at different stages of projection analyses. We illustrate several types using the
example of the Species Area Relationship. Simple causal models clarify the causal relationship of interest (i.e. the impact of the treatment
on the outcome), but typically need to be elaborated for analysis. Exploratory models may identify useful covariates of the response
variable, but are not ideal for attribution of causal impacts. Elaborate causal models make explicit the structure of underlying causal
assumptions, and identify the different characteristics of variables and their interactions: key requirements for developing both theories of
change and confidence in model projections derived from such analyses. Illustrated here is an elaborated model that may be suitable for
‘reductionist’ causal inference, whereas an example of more complex ‘all-cause’ models can be seen in Box 3.
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model is specified, though Hyttinen et al. (2015) suggest methods for
incorporating model uncertainty. Structural Causal Modelling extends
and increases the utility of graphical models, and represents a growing
area of research and theory (Pearl, 2009; Runge et al., 2015). For ex-
ample, structural causal models can identify critical network nodes and
interactions (Runge et al., 2015), and emerging theory on transport-
ability of Structural Causal Models may facilitate more confident model
transfer from well-studied to less well-studied species and populations
(Pearl, 2009; Bareinboim and Pearl, 2013) (Box 3).

3. Parameterization: using better data

Biases are pervasive in empirical conservation research because this
research is often conducted in contexts of strong personal motivations,
extremely low rates of study replication, complex systems, and high
intrinsic rates of variability (Iftekhar and Pannell, 2015). Causal in-
ference, systematic literature reviews, and robust expert elicitation
methods offer ways to identify and mitigate biases in data drawn from a
wide variety of sources (Martin et al., 2012; Cook et al., 2014; Martin
et al., 2014; Martin et al., 2015; Pascual et al., 2016).

3.1. Identifying bias in observational and experimental data

Concepts of bias have been long discussed in ecology; for example it
is recognized that even the idealized ‘gold standard’ of experimental
design, randomized controlled trials, can also be subject to ‘demonic’
and ‘non-demonic’ biases (Hurlbert, 1984). Demonic bias derives from
foreseeable causes and can impact an experiment if the design of the
experiment does not adequately control for this during sample selec-
tion. Non-demonic bias is derived from chance events that occur while
an experiment is in progress. A sample that is unrepresentative of the
population of interest may often be a source of bias. This ‘selection bias’
may arise when selection occurs non-randomly due to certain sub-po-
pulations being specifically selected for treatment, self-selecting for
treatment, or more susceptible to sample attrition, for example in pilot
programs, prioritization, or voluntary participation. Dealing with bias is
not about more advanced statistical methods, rather, it should focus on
experimental design (Ferraro and Pressey, 2015; Jones and Lewis,

2015; Baylis et al., 2016), and conscientious interpretation of results to
avoid confirmation bias and ‘just-so’ storytelling (Nuzzo, 2015). Con-
firmation bias describes a cognitive bias in which people selectively
collate, interpret, present, and recall information that support their
beliefs or hypotheses, and give disproportionately less consideration to
alternative possibilities. Confirmation bias is particularly common in
emotionally charged issues or when beliefs are entrenched. ‘Just-so’
storytelling is an ad hoc fallacy, a narrative explanation of facts made
after the event, and therefore contemporarily unverifiable and un-
falsifiable. These explanations are not necessarily wrong, rather they
are hypotheses that require further assessment. An understanding of
potential sources of bias and how causal inference methods (Ferraro
and Pattanayak, 2006; Miteva et al., 2012; Fisher et al., 2014; Ferraro
and Pressey, 2015) can address these issues is useful for researchers and
practitioners designing experiments as well as researchers collating
data from the published literature. These approaches facilitate the
identification and treatment of potential bias, and appraisal of the ri-
gour of experimental results.

3.2. Recognizing biases in collated data: robust systematic review and
expert elicitation

Additional sources of bias become relevant when collating para-
meter values from published research. Several biases are common when
drawing data from a single source, including bias towards parameters
used by previous similar work or that have been highly cited, towards
the most recent analyses, or to a parameter that favorably supports the
researcher's position (i.e. ‘confirmation bias’) (Haddaway et al., 2015;
Nuzzo, 2015). To avoid these biases, many researchers turn towards a
literature review. However, bias can be inherent in the literature, as
well as resulting from personal biases of the researcher selecting and
interpreting the literature (Stocks et al., 2008; Martin et al., 2012a;
Martin et al., 2012b; Haddaway et al., 2015; McKinnon et al., 2015;
Nuzzo, 2015). Such problems are further compounded in expert elici-
tation, where bias may be present in the published evidence base
(Stocks et al., 2008; Martin et al., 2012a), and in an experts' experience
and translation of this evidence base (Iftekhar and Pannell, 2015;
Nuzzo, 2015). Further, in expert elicitation there are substantial

Box 3
Use of SEM to develop causal models for song sparrow conservation.

Structural equation models (SEM, or Path Analysis) (Wright, 1934; Shipley, 2002) offer one approach to developing elaborate causal
models (Bollen and Pearl, 2013). Their usefulness in causal inference, particularly for interrogating model structure in complex contexts
(Pearl, 2009), has led to their widespread use in health, social sciences, and ecology (Shipley, 2002; Grace et al., 2015; Kline, 2015).

Analysis of song sparrow (Melospiza melodia) populations demonstrates the utility of SEMs for conservation. Several subspecies are
subject to stochastic variation in climate, brood parasitism and nest depredation, with each of these factors capable of driving local
extinction (P. Arcese and D.R. Norris, unpublished). Aiming to resolve debate regarding which of these factors were most important for
management, Arcese & Norris (unpublished) studied an island population over a 40-year period. Resulting SEMs revealed that adult and
juvenile survival each exerted about three times more influence on population growth rate, r, than reproductive rate, and that juvenile
survival determined r in most years (Fig. B3). Arcese and Norris show that, despite severe winter weather severely limiting populations in
the past, climate change has ameliorated these exogenous limits on r and increased the influence of density-related limits on r via com-
petition for space and food.

If the results from the island population can be transferred to other song-sparrow populations that are currently threatened, the model
implies that expanding suitable habitat and re-establishing locally extinct populations by translocating juveniles from extant populations at
or near carrying capacity represents a more reliable route to minimizing extinction risk than controlling parasites or predators (P. Arcese
and D.R. Norris, unpublished). Such model ‘transportation’ – extrapolation or generalisation of impact estimates from one sample to the
population of interest – is already often done informally, often qualitatively, as in the narrative example. However, these narratives are
often subject to narrative criticism (i.e. narratives of why such extrapolations might not be appropriate) (e.g. Höfler et al., 2010). More
recent work has developed structural causal theory to formally define model transportability, and thereby derive “licensing assumptions”
including transport formulae under which model transportability is acceptable (Bareinboim and Pearl, 2013). Such transportability theory
may be useful for transportation of impact estimates from experiments or pilots to larger populations (i.e. sample-selection bias), between
study systems, to identify useful instrumental or surrogate variables, and in meta-analysis (Bareinboim and Pearl, 2013, 2014). We see
many opportunities to engage with this frontier of causal research in the domain of conservation and environmental management.
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challenges in designing an elicitation procedure that is robust to biases
(Martin et al., 2012b; Firn et al., 2015). Such biases may originate from
the confidence of individual experts and the social dynamics of the
expert group (Martin et al., 2012b), from personal preferences and
perceptions (e.g. optimism, pessimism, or loss aversion), or from lim-
itations on rationality, including framing effects, reference-point bias,
or reliance on limited or available information (Iftekhar and Pannell,
2015). Substantial advances have been made in the field of systematic
review methodology, providing guidelines on how literature can be
comprehensively sampled, consistently evaluated, and evidence

appropriately weighted in synthesis (Collaboration for Environmental
Evidence, 2013; McKinnon et al., 2015). While a full systematic review
for every parameter may not by warranted (Addison et al., 2013), it is
relatively easy to integrate the principles of systematic review into
workflows (Haddaway et al., 2015). Similarly, expert elicitation
methods have been developed (Martin et al., 2012b), and are increas-
ingly applied as modes to source information where data are lacking
(Firn et al., 2015; Martin et al., 2015), as is often the case when de-
veloping novel conservation policies or interventions (McKinnon et al.,
2015).

Fig. B3 SEM results for song sparrow management (simplified). Lines represent standardized partial regression coefficients (β; direc-
tional) or covariances (non-directional), with key variables of management interest highlighted. SEM models were constructed separately
to explain A) variation in immigration rate and fledging rate (reproduction), B) variation in adult and juvenile survival, and C) influence of
vital rates on population growth rate (r). For simplicity, significance levels are not shown, only positive effects on r are given, and minor
covariances are absent in C. P. Arcese and D.R. Norris, unpublished.
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Box 4
Partial identification for examining assumptions.

In retrospective modelling analyses, partial identification recognizes that the assumptions underlying estimates of the counterfactual, and
hence the impact estimates, may have varying levels of credibility (Manski, 2007; McConnachie et al., 2015). It provides an analysis
framework that sequentially explores assumptions increasing in strength, in effect a special case of sensitivity analyses. While rarely used in
the evaluation of conservation programs to date (McConnachie et al., 2015), this process has a number of potential benefits deriving from
the transparent assessment of bias and plausibility of assumptions. These benefits include providing constructive direction when point
estimates are potentially biased or contentious, or when information on the potential behavior of participants during future policy or
program implementation is limited (McConnachie et al., 2015).

Credibility of assumptions may vary depending on how strong the assumptions are, how well supported the assumptions are by evi-
dence, and how contentious the claims are (for example, due to existing personal biases) (Fig. B4). ‘Identification regions’ show the range of
values that contain the impact estimate. The identification region with the highest credibility, after the maximum potential bounds, is the
‘no assumptions’ estimate. This is constructed by clipping the minimum and maximum theoretically possible estimates for the counter-
factual, with the values of the observed ‘treated’ units. As this makes no claims in regard to the counterfactual, it can engender little
controversy aside from measurement error. Slightly stronger assumptions may include a ‘monotone treatment response’ estimate, which
constrains the ‘no assumptions’ bounds further, by assuming that treatment impacted the outcome positively (or negatively, should this be a
more credible assumption). A ‘monotone treatment selection’ estimate further constrains the bounds, by assuming that the treatment was
selectively applied to areas that were in worse (or better) condition than others prior to treatment. These identification regions make some
claims on what the counterfactual might be, thus they may not be considered credible if these claims are not supported by evidence.

Point estimates need to make stronger assumptions, requiring them to be backed by more evidence. The most credible point estimate
may be identified using conditioning, a causal inference technique that matches samples based on observable covariates (McConnachie
et al., 2015). Other impact point estimates include those from Before-After-Control-Intervention (BACI) designs, and the simpler Before-
After or Treated-Control comparisons, which may be credible if evidence is shown to suggest the samples were representative, and if the
design reasonably accounts for change over time and selection bias (Ferraro and Pressey, 2015; McConnachie et al., 2015).

Negative

impact

Positive

impact

No

impact

No assumptions

Monotone treatment response (positive)

Monotone treatment selection bias (negative)

Matching

Maximum potential bounds

Before-After-Control-Intervention

Treated-Control

Before-After

Increasing strength

of assumptions

Increasing need

for evidence to 

support assumptions

Increasing potential

for criticism of

assumptions

Fig. B4 Partial identification is an analysis framework that sequentially explores the implications of assumptions regarding the coun-
terfactual. Assumptions decrease in credibility due to increasing strengths of the claims regarding the counterfactual, which increases the
potential for criticism, and the need for evidence to support the claims.
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4. Interpretation: using data better

Biases may still be unavoidable even with greater attention to ex-
perimental design and analysis, systematic review procedures, and
rigorous expert elicitation methods. For example, bias is likely in re-
gional or global scale analyses, when data are not necessarily collected
for the specific purpose of the evaluation (McKinnon et al., 2015).
However, if data shortcomings are made transparent, improvements in
model specification and interpretation may be possible. Model and data
imperfections can influence the design of sensitivity and uncertainty
analyses, inform model transportability to novel contexts, and indicate
the usefulness of partial identification to explore the influence of as-
sumptions on the results. In this section we outline key methods for
dealing with data interpretation issues, including sensitivity analyses
and partial identification.

4.1. Dealing with imperfect data and data uncertainty

Techniques for dealing with imperfect data and parameter un-
certainty have centered on sensitivity and uncertainty analyses.
Sensitivity analysis aims to characterize how variation in model inputs
cause changes in model outputs (Saltelli and Annoni, 2010). It de-
termines which model input parameters are most influential, and
identifies where reducing model uncertainty might improve model
performance. In practice, sensitivity analysis is often carried out by
varying one parameter at a time from a given baseline parameteriza-
tion, often within some specified variation (e.g. one standard deviation)
from the mean parameter estimate. This ‘one-at-time’ approach can be
misleading as most of the model input parameter space remains un-
explored, and is particularly problematic when there are non-linear
interactions between parameters (Saltelli and Annoni, 2010). Global
sensitivity approaches, which vary multiple parameters simultaneously
to account for possible interactions and nonlinear responses, are gen-
erally preferable (Saltelli and Annoni, 2010).

Uncertainty analysis aims to provide confidence bounds on a model
output (or its probability density function). In practice, determining
output uncertainty can be similar to a global sensitivity analysis,
however the focus of uncertainly analysis is not on the extent to which
parameters are causing changes in model output, but on how un-
certainty in all model inputs propagates through the model and results
in uncertainty in the output (Norton, 2015). In developing projections,
an ideal rigorous uncertainty analysis would account for the full un-
certainty in all model input parameters as well as structural uncertainty
in the underlying model. Rigorous uncertainty analyses allow for de-
fensible confidence intervals on model projections, in particular when
modelling specific alternative scenarios, as the size of these confidence
intervals will determine whether a model predicts a statistically sig-
nificant impact. It also allows best and worst case outcomes to be
identified, explicitly allowing levels of risk aversion to be incorporated
into decisions made using the model projections.

Partial identification is an alternative or complementary method for
dealing with uncertainty regarding assumptions (Box 4) (Manski,

2007). In retrospective analyses, this method systematically explores
the implications of assumptions regarding the counterfactual on the
range of impact estimates (the identification region) thereby addressing
questions of uncertainty and potential bias that relate to these (Manski,
2007). For prospective analyses, partial identification can be particu-
larly useful to give bounds on parameter estimates when there is un-
certainty or controversy regarding potential impacts of interventions
(McConnachie et al., 2015).

5. Synthesis and ways forward

To support the development of conservation interventions in com-
plex environmental, social, economic, and ethical contexts, transparent,
evidence-based models are critical. More transparent assumptions and
more believable causal models engender greater confidence in the
predictions of prospective evaluations, and these predictions will be
more justifiable in the face of critique. This confidence in the robustness
of the science is, of course, only one element contributing to the wider
salience, legitimacy, and other forms of credibility of policy advice and
of policies themselves (Cash et al., 2003; Clark et al., 2016; Posner
et al., 2016), but it is an important element to maintain public trust in
science. Poor data, inappropriate models, erroneous assumptions, and
bias lead to advice that may systematically over or under-estimate the
impacts of policies or programs. Techniques drawn from causal in-
ference, scenario analysis, systematic literature review, and expert eli-
citation can help to recognize and reduce the inevitable bias and un-
certainty in analysing the likely impacts of conservation interventions
(Fig. 1). Further, when models need to be extrapolated to novel con-
texts, emerging techniques of structural causal modelling (including
transportability theory) and of partial identification could be integrated
into projections of conservation policy and thereby enhance the ro-
bustness of results and their interpretation.

In modelling the projected impacts of conservation interventions, a
more diverse array of tools and approaches is warranted. We ac-
knowledge that the tools and approaches reviewed here may not all be
necessary for every prospective modelling situation, or may not always
be time or cost-effective in delivering better policy and program advice
in every context. For example, in relatively simple, widely studied, and
non-controversial contexts, lengthy and elaborate fine-scale projection
models may not be required. However, even in these cases transpar-
ently clarifying model causal assumptions, considering potential bias in
parameter data, and conducting simple uncertainty and sensitivity
analysis may add little to no additional cost and result in more con-
fidence in the robustness of resulting policy advice. In more complex,
uncertain and controversial contexts, ignoring these advances in causal
inference and associated techniques will ensure that the current defi-
ciencies in prospective evaluations will remain. Broader recognition
and uptake of these tools and approaches will help to develop more
scientifically credible projections of impacts, and thereby, if heeded in
policy development, better outcomes for conservation.

Use better models Use better data Use data better

Graphical models to 
clarify assumptions

Elaborate models inc. 
specific treatments, 
mechanisms, &
defined outcomes

Attention to biases
in nature,
in literature, &
in people 

Examine internal &
external validity

Sensitivity analyses 
with purpose

Test assumptions -
partial identification

Clarify unavoidable
biases

Fig. 1. An overview of the methods available to enhance the
quality of model projections.
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