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Abstract 20 

In many scientific disciplines, common research practices have led to unreliable and exaggerated 21 

evidence about scientific phenomena. Here, we describe some of these practices and quantify 22 

their pervasiveness in recent ecology publications in five popular journals. In an analysis of over 23 

three hundred and fifty studies published between 2018 and 2020, we detect empirical evidence 24 

of exaggeration bias and selective reporting of statistically significant results. This evidence 25 

implies that the published effect sizes in ecology journals exaggerate the importance of the 26 

ecological relationships that they aim to quantify. An exaggerated evidence base hinders the 27 

ability of empirical ecology to reliably contribute to science, policy, and management. To 28 

increase the credibility of ecology research, we describe a set of actions that ecologists should 29 

take, including changes to scientific norms about what high-quality ecology looks like and 30 

expectations about what high-quality studies can deliver. 31 
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Credible evidence in ecology 43 

Like all scientific disciplines, ecology advances, in part, through the generation of credible 44 

empirical evidence. Ecologists rely on this empirical evidence in their efforts to understand how 45 

the natural world works and to inform policy and management decisions. For example, models of 46 

climate change could drastically over- or under-predict how much carbon is sequestered by 47 

terrestrial plants without accurate estimates of effect sizes and the uncertainty about these 48 

estimates. Likewise, based on published studies, land managers may implement an intervention 49 

that promises to have relatively large effects, whereas the true effect is small or in the opposite 50 

direction.  51 

Concerns about whether scientists have the correct incentives to generate credible empirical 52 

evidence have been raised in a wide range of scientific fields1, including ecology2–4. These 53 

concerns revolve around common research practices and the professional incentives that 54 

encourage them. These practices, such as the selective reporting of results that are expected to 55 

impress reviewers and editors, undermine the credibility of empirical ecological science and 56 

have been connected to low rates of replicable findings in other fields5–9. A recent survey asked 57 

ecologists (N=494) and evolutionary biologists (N=313) to self-report their use of such 58 

“questionable research practices”10. Nearly two-thirds of respondents admitted to selective 59 

reporting at some point in their career and more than half admitted to reporting an unexpected 60 

finding as though it had been hypothesized prior to conducting the study (Hypothesizing After 61 

Results are Known or HARKing). These responses, however, do not necessarily demonstrate that 62 

these research practices are prevalent in recent ecology publications or that they have affected 63 

the empirical results reported in those publications.  64 
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Here, we report empirical analyses that indicate the prevalence of research practices that 65 

undermine the credibility of results in recent ecology publications. Our focus in these analyses is 66 

on widespread research practices that can impact the credibility and replicability of ecological 67 

science rather than on the precise meanings of “credibility” or “replicability” in ecology, which 68 

has been explored in other publications11–13. We hope that empirical evidence for these 69 

undesirable research practices in popular ecology journals may make ecologists take the 70 

problems they cause, and their solutions, more seriously. 71 

We have three aims. First, we seek to provide a primer for new scientists and a refresher for 72 

experienced scientists on practices that lead to low credibility of published results. We focus on 73 

practices that can be empirically detected via analyses of published articles. Second, we quantify 74 

the extent to which these practices are prevalent in ecology publications. Specifically, (a) we 75 

assess, through the lens of statistical power, the degree to which ecologists use empirical designs 76 

that provide unreliable estimates of ecological relationships and the extent to which the 77 

magnitudes of published effect sizes are exaggerated, (b) we assess the degree to which 78 

ecologists selectively report statistically significant results (which can exacerbate the problem of 79 

exaggerated effect sizes), and (c) we assess the prevalence of multiple hypothesis testing without 80 

corrections for multiple comparisons (which can exacerbate selective reporting and exaggerated 81 

effect sizes). Our third and final aim is to summarize a set of solutions that authors, editors, 82 

reviewers, research institutions, and funders can adopt to prevent and mitigate the harms of 83 

practices that can undermine the credibility of ecological science. 84 

To determine the extent to which these practices are prevalent in the ecology literature, we 85 

collected data from empirical studies published between January 2018 and May 2020 in five 86 

popular journals that publish general interest ecology studies and include many empirical 87 
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designs: Ecology, Ecology Letters, Journal of Ecology, Nature, and Science. We believe that 88 

these journals are representative of good quality ecological studies and thus we assume that the 89 

exclusion of other journals does not bias our conclusions. We included only empirical articles 90 

that reported statistically estimated parameters and errors in tables in the main or supplemental 91 

texts. Simulation, modeling, and meta-analysis articles were excluded. Because most statistical 92 

tests can be presented in table format and we have no reason to assume that certain tests or types 93 

of tests are more frequently reported in tables, we assume that including only estimates presented 94 

in tables does not bias our results. For every study, we then recorded: 1) every estimate and its 95 

associated error, 2) the sample size, 3) whether the study used multiple hypothesis testing, 4) 96 

whether there were corrections for multiple hypothesis testing, and 5) if data and code for 97 

analyses were available. 98 

Overall, we collected data from 354 studies that reported 18,917 effect sizes and standard errors. 99 

For detailed methods, see Methods section. Our dataset and code are available at 100 

https://osf.io/9yd2b/. 101 

Practices that lead to low credibility 102 

Underpowered designs 103 

The amount of information that ecologists can extract from their data depends on the variability 104 

of their data, the magnitude of the relationships they seek to estimate, and the precision with 105 

which they seek to estimate those relationships. When ecological data are highly variable and 106 

sample sizes are small relative to the true effect sizes, the estimated effect sizes are unreliable 107 

(i.e., the variability of the estimated effect sizes around the true effect will be large).  108 

https://osf.io/9yd2b/
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Given that most ecologists have training in frequentist statistics and engage in hypothesis testing, 109 

we explore the reliability of the estimated effects sizes in the ecology literature through the lens 110 

of statistical power. The statistical power of a test is the chance of detecting an effect, if such an 111 

effect exists14. Statistical power is based on the anticipated effect size, the sample size, the Type 112 

1 error rate, and the sample variability. A conventional threshold for sufficient statistical power 113 

is 0.80, meaning that, if an effect of a given magnitude exists, a study design will detect it 80% 114 

of the time. Ecologists often seek to estimate the relationship between two variables and test 115 

whether the estimated value is different from a null hypothesis, which is usually that there is no 116 

relationship between the two variables. Consider, for example, a study that looks at how plant 117 

growth is related to phosphorus addition. A null hypothesis could be that phosphorus addition 118 

has no effect on plant growth. If a study is adequately powered, one would be likely to reject this 119 

null hypothesis if it were in fact false because the variability of the estimated effect sizes around 120 

the true effect size will be low. If, however, the study is underpowered, rejecting the null 121 

hypothesis would be unlikely because the variability of the estimated effect sizes around the true 122 

effect will be large. Thus, underpowered designs lead to greater prevalence of type II errors.  123 

To estimate the statistical power of studies in our data, we followed the methods in 15. First, we 124 

calculated an estimate for the magnitude of the true effect sizes that our collection of studies 125 

attempts to estimate. We estimated this effect as the weighted average of the partial correlation 126 

coefficients (PCCs) for all estimates in our study. A PCC is a measure of the strength and 127 

direction of the relationship between two variables when the influence of all other variables is 128 

held constant. Like a meta-analysis, this weighted average gives more weight to studies with 129 

more precise estimates. Our estimated “true effect” for our collection of studies was a PCC value 130 

of 0.06. Implicitly, we assume that there is no selective reporting or publication bias against 131 
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small effect size estimates in the literature (i.e., we assume ecologists report in the final 132 

publication everything that they estimated). Then we calculated the statistical power of the 133 

studies to detect this effect size (see Methods ‘Power Analysis’ for details). This approach does 134 

not imply that ecological effect sizes are homogenous across sites, studies, or variables in our 135 

354 studies. Rather, the approach offers an approximation of the magnitude of the true effect size 136 

that a typical ecological study would expect to find.  137 

Based on this approach, most tests in our collection of studies were underpowered at the 138 

conventional 0.80 threshold (Fig 1A). The median power for a test was 13.4%. Only 13.2% of all 139 

tests were powered at the 0.80 threshold or above. At a 0.60 threshold, 17.6% of all tests were 140 

adequately powered. Our results for a broad set of ecological studies are similar to those found in 141 

subfields of ecology16–18 and in other disciplines7,9,19. To conclude the opposite – that the study 142 

designs are well powered – requires one to assume, among other assumptions, that ecologists 143 

have accurate expectations about the true effect sizes they seek to estimate in each study context 144 

and adjust their designs in a way that leads to less precise estimates when the true effect sizes are 145 

large (see Methods ‘Power Analysis’ for details). These expectations may exist, but in our 146 

collection of 354 published studies, only one mentioned performing power analyses, a finding 147 

that is similar to one reported in conservation biology where less than 10% of studies reported 148 

statistical power20. 149 

Whether our approach yields an accurate approximation of the statistical power of a typical 150 

ecology study also depends on another assumption. We assume that ecologists care about 151 

distinguishing small effect sizes from zero (e.g., PCC values less than our calculated weighted 152 

PCC of 0.06). Ecologists may, however, not be interested in small effect sizes. In fact, the 153 

sample sizes needed to distinguish these small effect sizes may be unattainable in single studies. 154 
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If the assumption that ecologists are interested in distinguishing from zero the typically small 155 

effect sizes reported in the literature is incorrect, we have under-estimated power in our analysis 156 

above. 157 

Given that there is no single effect size that all ecological studies can expect or in which all 158 

ecologists would be interested, we also estimated power over a range of potential “true effect 159 

sizes.” This range of PCC values includes the weighted mean of observational studies (0.05) in 160 

our sample, the unweighted median of effect sizes (0.15) in our sample, and the weighted mean 161 

of experimental studies (0.19) in our sample (see Supplemental Figure 1 for distribution of effect 162 

sizes in our data set). If we were to assume that the true effect ecologists in which ecologist are 163 

interested is large (PCC = 0.2), over half of all estimates are underpowered. For even larger 164 

effects (PCC = 0.3), over a quarter of estimates are underpowered (Fig 1B). 165 

Exaggeration bias 166 

The prevalence of underpowered study designs can lead to an exaggeration bias9,21 in published 167 

studies when statistically significant results are preferred over non-significant results by editors, 168 

reviewers, and authors (i.e., publication bias 22). Prior studies have reported evidence of 169 

publication biases in ecology2–4,23, and these biases may be more severe in high impact journals 170 

like the ones we include in our study24. To illustrate how exaggeration bias arises, we consider 171 

again the example of a study that seeks to estimate the effect of phosphorus addition on plant 172 

growth. Assume that the true treatment effect is a 2% increase in aboveground biomass. In 173 

adequately powered studies, most estimated effects would be close to the 2% increase. In 174 

underpowered studies, however, the estimated values would vary widely around 2%, such that 175 

researchers are likely to report values that are much larger than the true value (type-M error) or 176 
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even opposite in sign (type-S error)21. Yet, in underpowered studies, only the values with 177 

exaggerated magnitudes are going to be statistically significant (i.e., with confidence intervals 178 

that exclude zero).  179 

Prior research21 reports that serious exaggeration problems arise when power is less than 50% 180 

(with power less than 10%, serious problems with estimates of the wrong sign also arise). If 181 

enough underpowered studies were published, researchers would be able to conduct a meta-182 

analysis using the wide range of estimates to calculate a more accurate overall effect size22,25. 183 

However, where there is publication bias against results that do not pass conventional thresholds 184 

of statistical significance or have unexpected signs9,19,26, mostly the large effect sizes with 185 

expected signs end up being published. Thus, the published effect sizes that scientists see are 186 

likely exaggerated in magnitude. 187 

Following the methods of 7 and 15, we quantified the exaggeration bias of underpowered 188 

estimates by comparing reported effects to an average “true effect” of adequately powered 189 

estimates (see Methods ‘Exaggeration Bias’ for more details). As we did for the analysis of 190 

power, we also present the exaggeration bias results for a range of potential magnitudes of true 191 

effect sizes that ecologists may seek to estimate.  192 

Our analysis implies that 63% of the estimates in underpowered studies are exaggerated over the 193 

true effect size by a factor of two or more (Fig 2A). Even if we assume a “true effect” of much 194 

greater magnitude, 1 in 4 estimates would still be exaggerated by a factor of 2 or more (Fig 2B). 195 

Our results are similar to a recent study of effect size exaggeration in three types of experimental 196 

ecological field studies. Using a different methodology, this study found that estimates were 197 
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exaggerated by anywhere from 0.66 times (drought experiments) to 3.29 times (warming 198 

experiments) on average17. 199 

In a field where results often have real-world applications, magnitudes matter. In much of the 200 

literature on “replication” and “reproducibility,” the emphasis tends to be on identifying and 201 

reducing false positives (e.g., 9,27). In our view, a more important, but often overlooked, problem 202 

lies in the potential for exaggeration bias in the magnitudes of reported effect sizes. This bias 203 

results from a mix of the designs that researchers use and the incentives they face in trying to 204 

publish their results (see next section on selective reporting).  205 

Based on our empirical results, we are not asserting that most of the ecological relationships 206 

reported in the literature are likely to be spurious – in fact, we doubt ecologists are studying 207 

relationships for which the sharp null hypothesis of zero effect is widely true. Instead, we are 208 

asserting that the magnitude of these relationships is inflated. In other words, we are asserting 209 

that we have indirect empirical evidence - “fingerprints”, if you will - that the published effect 210 

sizes in ecology journals exaggerate the importance of many ecological relationships. 211 

In our study, we use the concept of statistical power simply as a vehicle to illustrate the 212 

inconvenient truth about ecological data: the outcome variables are noisy, the target effect sizes 213 

are typically smaller than ecologists expect, and, given the designs ecologists are using and the 214 

incentives they are facing, the estimated parameters in the literature are likely to be unreliable 215 

and exaggerated. Our use of statistical power to explore the reliability of estimated effects in the 216 

ecological literature is not an endorsement of Null Hypothesis Statistical Testing (NHST) or the 217 

use of binary decision rules based on p-values to decide when an estimate is ecologically 218 

relevant (e.g., p<0.05) 27–32.  219 
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Selective reporting of results 220 

Because of publication biases in favor of statistically significant results4,26,32, researchers may 221 

seek to find and publish such results over those that are statistically insignificant33,34. To obtain 222 

statistically significant results, researchers may choose methodologies or exclude data based on 223 

whether the choices yield statistically significant results. Researchers may also decide to stop 224 

collecting data based on when results are statistically significant8,10. Such choices are more likely 225 

when they can transform “marginally nonsignificant” results into statistically significant results 226 

(e.g., “p-hacking”). These choices may not be conscious and, when each is viewed in isolation, 227 

may be justifiable. Yet, the potential for these selective reporting practices to be widespread 228 

makes it difficult for readers to determine the credibility of a given analysis35. Selective reporting 229 

is found in most scientific disciplines36. Indeed, a recent survey of ecologist and evolutionary 230 

biologists reported that many researchers engaged, at least once in their careers, in selective 231 

reporting, such as not reporting response variables that did not reach a statistical significance 232 

threshold10. While some selective reporting practices may seem more malicious than others, all 233 

may exacerbate the reliability and exaggeration issues raised in the previous sections. 234 

To explore the extent of selective reporting of statistically significant results in ecology, we 235 

followed the methods in 33. We plotted the density of reported t-statistics and overlayed an 236 

Epanechnikov density kernel. We then weighted estimates by the number of estimates per table 237 

in each article (see Methods ‘Selective Reporting’ for more details). Without selective reporting, 238 

the density kernel should be a smooth function that declines as t-values increase. In contrast, a 239 

dip in the kernel density that creates a bimodal distribution with a second peak before the 240 

traditional 1.96 cut-off value for significance (i.e., p = 0.05) implies the presence of selective 241 
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reporting practices (not all selective reporting practices lead to a bimodal distribution37, and thus 242 

its absence does not necessarily imply an absence of selective reporting practices). 243 

When we focus on the results reported in the main article (as opposed to the supplemental 244 

material), the distribution of t-statistics has a bimodal distribution with fewer-than-expected t-245 

statistics reported right before the traditional cut-off of 1.96 (Fig 3A). Yet when examining just 246 

the results presented in the supplemental text, we found no unusual distribution of t-statistics 247 

(Fig 3B). After combining all the results from the main text and supplemental materials, we 248 

again observe an unusual dip in the distribution of t-statistics (Fig 3C).  249 

We hypothesize that this pattern of test statistics may arise from three sources. First, a researcher 250 

may pose a hypothesis that X influences Y and then use data on X and its covariates to test the 251 

hypothesis. The researcher may try multiple model specifications and statistical tests and then 252 

choose the combination that yields the most compelling results about the effect of X on Y to 253 

include in the main text, relegating the less compelling results to the supplemental material. 254 

Second, the same researcher may be unable to reject the null hypothesis that X has no effect on 255 

Y with any model or test. They then may search for other interesting and statistically significant 256 

effects in the data to report and revise the hypothesis they claim to be testing in the main text 257 

(HARKing). The researcher may still present all the tests that they conducted but place the 258 

nonsignificant results in the supplement instead of the main text. Third, rather than test a single 259 

hypothesis, ecology researchers often posit research questions in the form “what determines Y?” 260 

Such studies yield a range of estimated parameters, at least one estimate for each posited 261 

determinant of Y and maybe more if the researcher uses a variety of plausible models. The 262 

researcher may then selectively pick the “most interesting” estimates to report in the main text 263 

or, if they report all of the estimates, they may selectively pick the estimates from the “best” 264 
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model (“best” could be determined by statistical criteria but may also be determined by criteria 265 

that maximize the probability of publication, such as “how many statistically significant 266 

variables are obtained” or “what understudied variables deliver statistically significant results”). 267 

The perceived “less interesting” estimates or “inferior” models are relegated to the supplemental 268 

materials.  269 

We cannot formally test these hypotheses with our data, but the responses from a recent survey 270 

of ecologists are consistent with our hypotheses10. Over 50% of the respondents self-reported 271 

that they did not report some variables in their analyses, did not report all the statistical tests they 272 

ran, or switched analysis strategies after seeing the results. Over one-third of ecologists admitted 273 

to collecting more data after checking to see if their initial results were statistically significant, or 274 

not reporting covariates if they failed to reach a significance threshold. Given that these 275 

responses are self-reported, they may underestimate the prevalence of these practices in ecology. 276 

They do, however, provide some evidence for why we see the bimodal distribution of t-statistics 277 

in Fig. 3A. The lack of this bimodal distribution in Fig. 3B, however, suggests that ecologists 278 

may be reporting their nonsignificant results, even if only in the supplemental materials. 279 

However, if authors are changing their hypotheses based on the results they report in the main 280 

text (i.e., HARKing), the presence of nonsignificant results in the supplemental materials 281 

provides little comfort about the credibility of the ecological evidence base (recall that over 50% 282 

of respondents in the survey by10 self-reported HARKing in prior studies). 283 

Multiple Hypothesis Testing 284 

Opportunities for selective reporting grow when researchers engage in multiple hypothesis 285 

testing, where the same data are used to answer multiple research questions. The practice 286 
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includes testing the effects of one cause on multiple outcomes, testing the effect of multiple 287 

causes on one outcome, or testing heterogeneity of effects across sub-groups within the data. As 288 

more hypothesis tests are done on a given dataset, the likelihood of “false discoveries” increases 289 

simply because the error rate associated with a single hypothesis test does not account for a 290 

series (or family) of tests38–40. For example, a study that looks at the impact of phosphorus on 291 

total growth of the entire plant community along with growth of grass, legume, and forb species 292 

separately is testing multiple hypotheses.  293 

In frequentist statistics, there are many procedures that allow researchers to present all of their 294 

hypothesis tests and to adjust their inferences when multiple hypotheses are tested e.g.,39–41; 295 

other procedures exist for the Bayesian context, e.g., 42. However, application of these 296 

procedures is challenging because of debates about when the procedures are necessary and how 297 

best to execute them43–45. Further, adjusting inferences for multiple hypotheses comes with the 298 

trade-off of decreasing statistical power46, which, as we showed above, is already low in ecology. 299 

Yet, without a full reporting of all tests that the authors performed and a justification for 300 

adjusting or not adjusting inferences based on that family of tests, the credibility of the results 301 

reported in ecology publications cannot be fully appreciated. 302 

To shed light on the potential effects of multiple hypothesis testing on the ecological literature, 303 

we calculated the percentage of studies in our dataset that used multiple hypothesis testing and 304 

the percentage that used corrections for multiple hypothesis testing. Most studies in our dataset 305 

tested multiple hypotheses (85.0%), but very few used corrections (14% of those that tested 306 

multiple hypotheses; Fig 4). While correcting for multiple tests may not always be necessary 307 

(e.g., 41,43,47), reporting why corrections were or were not used is necessary for readers to make 308 

judgements about the credibility of the analyses. 309 
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Together with selective reporting (for which we presented evidence in the previous section) and 310 

publication bias, multiple hypothesis testing may skew how researchers interpret the evidence 311 

base 48. Researchers may be incentivized to report only “interesting” and statistically significant 312 

results instead of all the tests they performed on the dataset. Thus, we may not even know the 313 

extent to which multiple hypothesis testing occurs because some results may be simply excluded 314 

from publications.  315 

Fostering a credibility culture in empirical ecology  316 

Strengthening the reliability of ecological evidence will require changes in how ecologists 317 

produce and consume research. Ecologists must change their expectations about what high-318 

quality ecological studies should look like and their expectations about what high-quality 319 

ecological studies can deliver. While these expectations can be shaped through better statistical 320 

knowledge49,50, knowledge alone will be insufficient. 321 

Changing expectations about what high-quality studies look like and can deliver will require 322 

changes in the incentives that ecologists face and in the norms that guide their empirical work. 323 

To encourage these changes across scientific fields, scholars have proposed a range of actions, 324 

including actions that individual researchers can take and actions that researchers must 325 

implement collectively1. A few publications describe some of these actions and some of the 326 

challenges to scaling these actions in the context of ecology10,14,51–54. We believe that most 327 

ecologists would readily adopt these actions but are not yet aware of them. 328 

To help foster greater awareness, we highlight in Table 1 some promising actions that we believe 329 

will best contribute to improving the credibility and reliability of empirical ecology. Some of 330 

these actions, such as pre-registration and registered reports, are not well known in ecology. 331 
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More widely known is the importance of data and code availability for computational 332 

reproducibility55,56 (a study is computationally reproducible if the same results can be achieved 333 

with the data and code used for the original analyses12,13). Best practices have been laid out for 334 

data and code archiving in ecology 57–61, and several journals (e.g., Journal of Ecology, 335 

Ecological Society of America publications (https://www.esa.org/publications/data-policy/)) and 336 

institutions (e.g., the NSF funded LTER network) require public data archiving. Yet, despite 337 

these attempts to make data and code more accessible (e.g., 62), obtaining data and code can still 338 

be challenging60,63–68. For example, researchers were only able to obtain data from 19 of 74 339 

articles in wildlife management. Using the data from these 19 publications, the researchers could 340 

reproduce the results in only 6 publications, even though code was provided for 9 studies56. 341 

Therefore, availability does not equate to quality of data or code61; most ecology and evolution 342 

publicly available datasets in a recent analysis were not reusable (a measure of ease with which 343 

data can be reused by third parties) and only slightly over half were complete66. In our data set of 344 

354 studies, we found that most studies (78.5%) did make the data available, but only 18% of 345 

studies provided code for their analysis (and the code provided did not necessarily show the data 346 

cleaning steps; Fig 5). These percentages are similar to those reported using a sample of 346 347 

articles from ecology journals that had mandatory or encouraged code sharing policies. In that 348 

study, 79% of studies provided data, 27% provided code, and 21% had both data and code60.  349 

Even with broader implementation of actions like pre-registration and the provision of both data 350 

and analysis code, many important decisions will remain in the hands of researchers and thus 351 

unobservable to outsiders. Thus, to fully address the issues raised in our article, we need a 352 

cultural shift, a shift where we assign more value to important questions and best practices and 353 

less value to exciting stories and statistically significant results51,69. Given the complexity of 354 
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ecological systems, we should not expect high-quality empirical studies to provide “airtight” 355 

conclusions or discontinuous jumps in our understanding of ecological processes. Instead, we 356 

should expect single studies to incrementally build on prior studies, to have substantial 357 

uncertainty arising from many sources (not just sampling variability), and to even present 358 

conflicting inferences, implying that we do not fully understand the underlying ecological 359 

processes. 360 

One important step in the direction of a cultural shift is the recently created Society for Open, 361 

Reliable, and Transparent Ecology and Evolutionary biology (SORTEE: http://sortee.org). 362 

SORTEE aims to bring about cultural and institutional changes that can improve reliability and 363 

transparency in ecology, evolutionary biology, and related fields. The more the practices that 364 

SORTEE promotes are taught to new scientists, reinforced by senior researchers, and 365 

institutionalized by journals, funders and departments, the more reliable ecology research will be 366 

in the future. 367 

We acknowledge that this cultural shift will not be swift because it requires structural changes in 368 

the incentives and norms in academia and other research settings. Yet, the continued scientific 369 

and policy relevance of ecology depends on our collective action to change these incentives and 370 

norms as soon as possible. 371 

Methods 372 

Data collection 373 

Our methods follow those of 7. We collected data from articles published between January 2018 374 

and May 2020 in five popular journals for ecology publications. We collected data from every 375 

empirical article in three ecology journals (Ecology, Ecology Letters, and Journal of Ecology) 376 

http://sortee.org/
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and every empirical ecology article in two general interest journals (Nature and Science) [n = 377 

1,568 papers total]. Only empirical articles that statistically estimated parameters from data were 378 

included. These articles needed to have reported estimates and errors (standard errors or 95% 379 

confidence intervals) in tables either in the main text or supplemental materials. We focused on 380 

results reported in tables so that estimates and associated errors were easy to identify by the 381 

research team and to make sure that we were able to collect enough estimates for our analyses. 382 

Simulation or modeling articles were excluded. Meta-analyses were also excluded because we 383 

sought primary empirical data and did not want to double count any estimates that were found in 384 

both an original study and a meta-analysis.  385 

Two people looked at every article to make sure that it fit our criteria. Dr. Kimmel initially 386 

pulled ecology subject papers from Nature and Science because these are for general audiences 387 

and publish on a wide range of topics. Papers were automatically excluded if they did not include 388 

tables. Those papers that did include tables were categorized into those that were empirical and 389 

those that were not.  390 

We then recorded: 1) every estimate and its associated error, 2) the sample size, 3) whether the 391 

study used multiple hypothesis testing, 4) whether there were corrections for multiple hypothesis 392 

testing, and 5) if data and code for analyses in the study were available.  393 

From the 1,568 papers in the five journals between our target years, we excluded 1,038 that did 394 

not report statistical tests in tables. We excluded 136 that were either meta-analyses or not 395 

empirical. 15 papers were removed that did not report errors and another 3 were removed that 396 

reported 0 for a standard error. One paper was removed because it was duplicated in 2019 and 397 

one was removed because the supplemental materials where tables may have been located did 398 

not open. 17 complete papers were removed because we could not discern sample sizes for any 399 
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of the tests. When checking our sampled data, one paper was removed because it should not have 400 

been classified as an ecology topic from Science. During data processing, we removed one 401 

publication that had over 6,000 estimates and one was removed when we discarded the top 402 

percentile of t-statistics. Thus, our final sample size was 354 publications.  403 

When confidence intervals were reported instead of standard errors, we calculated upper 404 

confidence interval minus the estimate and lower confidence interval minus the estimate. We 405 

then recorded the smaller of the two if the interval was uneven. Thus, we are assuming less error 406 

about an estimate and potentially biasing our results towards a more favorable assessment of the 407 

literature than is warranted. These values were divided by 1.96 to obtain an equivalent standard 408 

error. Our use of 1.96 may not be correct for small sample sizes, but assuming that 1.96 is the 409 

benchmark will attribute less error about the point estimate. Thus, we will be overestimating the 410 

power of the tests. In other words, it makes our estimates of power more conservative.  411 

When sample sizes were not directly reported in the tables, we inferred sample size from the 412 

methods. If we could not determine the sample size based on information given in the tables and 413 

methods, we made note that the sample size was unclear and dropped these papers from our 414 

analyses (n = 5,412 estimates from 29 publications).  415 

To determine if a study used multiple hypothesis testing, we read the methods and looked at 416 

results presented in the main text of the manuscript. We categorized a study as using multiple 417 

hypothesis testing if the authors investigated multiple outcomes (dependent variables) associated 418 

with one cause (independent variable), investigated multiple causes (independent variables) 419 

associated with one outcome (dependent variables), or investigated sub-groups within their 420 

dataset. We were not concerned with one multiple regression being run (which could fall under 421 

multiple causes associated with one outcome), but instead several multiple regressions being run 422 
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on the same dataset. We tried not to include robustness checks as multiple hypothesis testing. We 423 

identified robustness checks by reading how the analysis was referenced and where possible 424 

reading figure or table captions. In most cases, robustness checks were easily identified – but the 425 

text was not always clear.  426 

Further, to determine if there were corrections done, we did a keyword search for the following 427 

phrases: false discovery rate, family-wise error rate, Benjamini-Hochberg, Benjamini-Yekutieli, 428 

Bonferroni, Sidak, Dunn-Sidak, Holm, Hochberg, per-comparison error rate, and Dunnett’s test.  429 

We also categorized each study as experimental or observational and each results table as 430 

presenting “main” or “non-main” results, as in 7,33. “Main” results were tables that were 431 

explicitly mentioned in the results text or figure legends. “Non-main” results were all other 432 

tables – usually those which were only reported in the methods or supplemental sections.  433 

Software used 434 

All data manipulation were done in R version 4.0.0 70, and we utilized the ‘here’ package 435 

(version 1.0.1) for replicability 71. Throughout our script, we used dplyr (version 1.0.7)72 and 436 

tidyr (version 1.1.4) 73 to manipulate our data. We also relied on ggplot2 (version 3.3.5) 74, 437 

ggpubr (version 0.4.0) 75, patchwork (version 1.1.1) 76, and scales (version 1.1.1)77 for making 438 

figures.  439 

Data cleaning 440 

Prior to the analyses, we cleaned and trimmed our data. First, we dropped 5,484 estimates from 441 

34 studies where we could not determine the sample size for the analyses presented in tables. 442 

Then, we removed all estimates with a standard error of 0 (n = 810 estimates) and all coefficients 443 

that were not reported as integers (n = 7 estimates).  444 
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We “derounded” our estimates and standard errors, as in 33, to account for differences in how test 445 

statistics were rounded when reported. To deround, we picked a random value from the uniform 446 

distribution with the range of where n is the reported value and x is the number of decimal places 447 

the in the original value. For example, if the original estimate was 0.007, we picked a value from 448 

the range of [0.0065, 0.0075) using a random draw from the uniform distribution in this interval.  449 

We then calculated t-stats based on the derounded estimates and their standard errors. The top 450 

percentile of the absolute value of the t-stats was then trimmed from the data (n = 257). This 451 

trimming ensures that a few data points do not disproportionately distort our estimate of power. 452 

We also excluded a study with more than 6,600 estimates (~26% of our total data before 453 

removed) so that our results would not be skewed by this one study. Our final sample size 454 

comprised 18,909 estimates from 353 unique publications.  455 

Power analysis 456 

To estimate the statistical power of studies in our data set and the extent of exaggeration bias, we 457 

followed the methods in 15. Power calculations are conditional on some assumption of the size of 458 

the effect that the researchers are seeking to estimate. Here, we expressed power in the form of 459 

the minimum detectable effect (MDE). The MDE of a study design is the smallest effect that, if 460 

true, has an X% chance of producing an impact estimate that is statistically significant at the Y% 461 

level 78. X is the level of statistical power (denoted as (1−𝛽) and commonly set to 80%) and Y is 462 

the Type I error rate (denoted as 𝛼 and commonly set to 5%). The MDE can be written in terms 463 

of the standard error 79:  464 

 𝑀𝐷𝐸 = (𝑡
1−

𝛼
2
+ 𝑡1−𝛽) 𝜀 

(1) 
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where, 𝑡1-/2 is the t-distribution with 1-/2 degrees of freedom, 𝑡1- is the t-distribution with 1- 465 

degrees of freedom, and 𝜀 is the standard error of the estimated effect. Using conventional values 466 

of 𝛼=0.05 and 𝛽=20% for power of 80%) in (1) yields:  467 

 𝑀𝐷𝐸 = (1.96 + 0.84)𝜀

= 2.8𝜀 

(2) 

Thus, when the standard error of an estimate is less than or equal to the MDE divided by 2.8, the 468 

test is adequately powered at the 80% threshold.  469 

To calculate the MDE across our sample of studies, we must convert the estimates to a unitless 470 

measure with a common scale. This conversion allows us to compare estimates across studies. 471 

Here, we used the partial correlation coefficient (PCC), calculated as 80:  472 

 𝑃𝐶𝐶 =
𝑡

√𝑡 + 𝑑𝑓
 (3) 

where 𝑡 is the associated t-statistic of the estimate and 𝑑𝑓 is the degrees of freedom. The 473 

standard error of the PCC was then estimated using 80: 474 

 
𝑆𝐸𝑝𝑐𝑐 =

𝑃𝐶𝐶

𝑡
=

1

√𝑡2 + 𝑑𝑓
 (4) 

Using the absolute values of PCC, we calculated the weighted average PCC for our entire 475 

dataset. The PCC values were weighted by the estimates’ precision (e.g., the standard error about 476 

the estimate), so that estimates with higher precision (smaller standard errors) were assigned a 477 

larger weight. This weighted average PCC value served as our estimate of the true effect (the 478 

MDE in equation 2) that ecological studies are attempting to estimate. We then divided the 479 

weighted average of the PCC values by 2.8 to get the threshold to which we compared the SEpcc 480 
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values. When the SEpcc of an estimate was less than or equal to the threshold, the estimate had 481 

adequate power, otherwise it was under powered. We repeated these analyses for 75% and 60% 482 

power also where the weighted PCC was divided by 2.63 or 2.21 respectively to obtain the 483 

threshold values. See lines 110-142 in RepCode.R for how these analyses were done. 484 

Most published studies did not provide the information required to calculate the degrees of 485 

freedom (𝑑𝑓) for each model. To be consistent across studies, we approximate 𝑑𝑓 using the 486 

sample size, N. Thus, we are often overestimating the df of a model, even more so when the 487 

estimates come from a mixed effects model (42% of the estimates in our dataset are from some 488 

sort of mixed effects model). Therefore, most of our calculated PCC values are smaller than they 489 

would be if we used df.  Because we are using N, we are also likely underestimating SE of the 490 

PCC values (which are smaller to a greater degree than the PCC values are smaller). This will 491 

reduce our SE of the PCC values which we compare to the MDE threshold. Thus, overall, we are 492 

likely overestimating the power of most tests in our sample of studies.  493 

We recognize that each empirical study in ecology seeks to estimate a different effect, whose 494 

true value may vary across studies. Given that the true effect size is not known, we also explored 495 

how our conclusions changed with changes in the assumed true effect size (Fig. 1B). For a range 496 

of “true effect” values, we computed how many PCC estimates had a standard error greater than 497 

the threshold value based on hypothetical true effect sizes divided by 2.8. Our range went up to 498 

PCC values of 0.20 (in terms of standard deviations of the outcome variable, this effect size 499 

would be analogous to an effect size of roughly 0.5 SD). Our estimated weighted PCC value (our 500 

MDE in equation 2) from our entire dataset was 0.06. For only observational studies in our 501 

dataset, it was 0.05. For only experimental studies in our dataset, it was 0.19. These values make 502 

sense if we assume that experimental studies tend to push the system further than observational 503 
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studies and, consequently, have larger effects to report. Further, this range spans most of the 504 

PCC values recorded from our dataset (Supplemental Figure 1) and covers the unweighted 505 

median PCC value of our sample. Thus, the values we present in Fig. 1B represent a reasonable 506 

range of PCC values that we may expect in ecological studies.  507 

Because several reviewers of our original manuscript raised concerns about using a single effect 508 

size to estimate power, we wanted to present the assumptions about the data generating process 509 

to come to an opposite conclusion; i.e., to conclude that the study designs are, in fact, well 510 

powered or, more generally, able to easily isolate signal from noise. 511 

Step 1: First, recall how we concluded that the typical true effect size in ecological studies is 512 

small in magnitude. In our data, the smaller the estimated effect, the more precise the estimate. 513 

Thus, our meta-regression estimator, which weights the estimates by their precision, yields a 514 

relatively small effect size, which we claim serves as a benchmark for thinking about the typical 515 

true effect size in ecological studies.  516 

Step 2: Let us consider how the conclusion from Step 1 could be wrong (i.e., our conclusion that 517 

true effect sizes tend to be small and thus most ecological studies are underpowered to detect the 518 

true effect sizes). One would have to make two assumptions: (i) ecologists, before designing 519 

their studies, think about the true effect sizes they are targeting and the underlying sampling 520 

variability, and they are roughly accurate in their expectations; and (ii) ecologists who target 521 

larger true effect sizes choose designs with relatively smaller sample sizes or contexts in which 522 

the variance in the outcome measure is relatively higher (i.e., ecologists who seek to estimate 523 

larger effect sizes do not maintain the same relative level of precision as those who seek to 524 

estimate smaller effect sizes). In other words, ecologists are adjusting their designs to match the 525 

true heterogeneous effect sizes that they target and are adjusting their designs in a way that 526 
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reduces the relative precision of the estimate as the true effect size increases in magnitude. If 527 

those two conditions hold, then our conclusions about unreliable estimates could be wrong.  528 

Step 3: Let us consider more deeply the two assumptions required to come to the opposite 529 

conclusion from the one described in our manuscript. Assumption (i) would require that 530 

ecologists think very carefully about the noise in their data and the magnitude of the target effect 531 

size prior to collecting data. Although we acknowledge that statistical power calculations or 532 

simulations are not the only way to think about such design attributes, they are likely to be one of 533 

the most popular ways of doing so among ecologists. Yet if ecologists conduct power analyses 534 

with regularity, they do not report them in their publications: only one study of the 353 535 

publications in our dataset reported conducting a power analysis. 536 

Even if ecologists do carefully think about the noise in their data and the magnitude of the target 537 

effect size prior to collecting data, assumption (ii) would require one of two additional 538 

conditions. First, when the expected treatment effect sizes are large, the costs of data collection 539 

or selecting study units are also large. This pattern of costs could imply that, in comparison to 540 

ecologists seeking to estimate small true effect sizes, ecologists seeking to estimate large effects 541 

cannot as easily reduce the influence of noise by increasing sample size or by selecting a subset 542 

of the target population that has lower outcome variance. If this first condition about differences 543 

in relative costs were not satisfied, an alternative condition could support assumption (ii). In 544 

comparison to ecologists who work on studies seeking to estimate small effect sizes, ecologists 545 

who seek to estimate large true effect sizes must be more cognizant that peer reviewers and 546 

editors are unlikely to care about the precision of their estimates as long as the confidence 547 

interval doesn’t cross the null hypothesis value. 548 
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Lastly, we computed the median power for our sample of tests as in 81. The median power is 549 

calculated as one minus the cumulative normal probability of the difference between 1.96 and 550 

the absolute value of the weighted average PCC estimate divided by the median standard error. 551 

We calculated this value for six sets of the data: the entire dataset, the set of “main” estimates, 552 

the set of estimates in the main text, the set of estimates in the supplemental text, the set of 553 

estimates from observational studies, and set of the estimates from experimental studies (see 554 

RepCode.R lines 304-333 for these calculations).  555 

Exaggeration Bias  556 

We calculated the exaggeration bias as in 7,15. First, we calculate the weighted average of PCC 557 

values for the subset of tests that are adequately powered. We refer to this value as the weighted 558 

average of the adequately powered estimators (WAAP). The WAAP that we calculated for our 559 

dataset was 0.05. According to Ioannidis (2017), the WAAP is a conservative benchmark for the 560 

“true” effect. To calculate how exaggerated estimates from underpowered designs were, we 561 

calculated the ratio between the absolute value of the PCC for each estimate and the WAAP. If 562 

this ratio was less than 1, estimates were deflated (e.g., smaller than expected). If this ratio was 563 

greater than 1, estimates were inflated. Specifically, we categorized estimates that were inflated 564 

by 0-100% (ratio greater than or equal to 1, but less than 2), by 100-300% (ratio greater than or 565 

equal to 2, but less than 4), and by 300% or more (ratio greater than or equal to 4).  566 

Again, because we acknowledge that the WAAP estimate may be different for different types of 567 

studies, we then explore how our conclusions may change given different WAAP values (Fig. 568 

2B). For a range of WAAP values from 0.01 to 0.2, we calculated how many estimates would be 569 

inflated by 100% or more. To do this, we compared the WAAP values in this range to the 570 

absolute value of the PCC values for underpowered estimates. Any PCC value divided by the 571 
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WAAP that was greater than 2 was considered inflated by 100% or more. See RepCode.R lines 572 

335-417 for these calculations and creation of figures.  573 

Selective Reporting 574 

To explore the extent of selective reporting of statistically significant results, we followed the 575 

methods in 33. We plotted the density of t-statistics and overlayed an Epanechnikov density 576 

kernel. Estimates were weighted by the number of estimates per table in each article. Without 577 

selective reporting, the density kernel should be a smooth function declining at higher t-values. A 578 

dip that creates a bimodal distribution with a second peak near the 1.96 cut-off for significance 579 

(i.e., p = 0.05) suggests selective reporting. 580 

Multiple hypothesis testing, data & code availability 581 

We calculated the percentage of studies in our dataset that used multiple hypothesis testing and 582 

the percentage that used corrections for multiple hypothesis testing (see definitions in Data 583 

Collection section above). To quantify the extent to which the data and analysis code from our 584 

studies are available for replication, we calculated the percentage of studies that made the data or 585 

analysis code, or both, available.  586 

 587 

Data Availability 588 

Our dataset is available at https://osf.io/9yd2b/. 589 

 590 

Code Availability 591 

Our analysis code is available at https://osf.io/9yd2b/. 592 
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Table 1. Changes in research practices to help increase the reliability of ecological research.* 
608 

Recommendation Details Purpose References 

Checklists Used at multiple stages of the publication 

process: for example, they can be used before 

submitting, during review, and by editors 

- ensure researchers include necessary 

information for evaluating the study 

- highlight key features of study design for 

reviewers 

- educate authors and reviewers on best 

practices 

Simmons et al. 2011; Nosek et al. 2012; 

Parker et al. 2016, 2018 

 

Data and Code 

Archiving 

Publicly available except where data privacy is 

necessary. 

- increase the transparency of study workflows 

and conclusions 

- facilitate computational reproducibility and 

evidence synthesis 

Nakagawa & Parker 2015; Nosek et al. 

2015; Parker et al. 2016; Munafò et al. 

2017; Culina et al. 2020  

Pre-registration & 

pre-analysis plans 

Pre-analysis plans: describe the research 

questions, the design, and the methods that will 

be used in a study; completed before data 

analysis begins (ideally, before all data have 

been collected).  

Pre-registration: process of registering, before 

the study or data analysis begins, a researcher’s 

intent to undertake a study and the study’s pre-

analysis plan. 

- help authors to be transparent in their 

research decisions 

- reduce, or at least make more transparent, the 

practices of HARKing, selective reporting of 

results, and presentations of presentations of 

exploratory analyses as if they were 

confirmatory analyses planned from the outset 

- help scholars quantify the “file drawer” 

problem: studies that were completed, but 

never published 

Kaplan & Irvin 2015; Forstmeier et al 2017; 
Nosek et al. 2018; Parker et al. 2019  

Registered Reports Two-stage peer review. Prior to data collection 

and analysis, authors submit study motivation, 

design, and methods. Reviewers judge 

submission based on quality of question and 

design. Second stage reviews assess how 

closely study follows original plan. 

- reduce selective reporting of results 

- reviewers focus on importance of question 

and quality of design, not the sign, magnitude, 

and statistical significance of results 

 

https://www.cos.io/initiatives/registered-

reports  

Button et al. 2016; Allen & Mehler 2019; 

Nosek et al. 2019; Scheel et al. 2021; 

Soderberg et al. 2021  

 

Results-Blind Reviews Full manuscript submitted for review, but 

results are not included. 

- reviewers focus on importance of question 

and quality of design, not the sign, magnitude, 

and statistical significance of results 

- no mechanism to reduce selective reporting 

because no pre-analysis plan is required 

Smulders 2013; Button et al. 2016 

 

Incentives Institutions that matter - namely, employers, 

funders, and publishers –move away from 

incentivizing “exciting” results and towards 

incentivizing best practices.  

- align personal values of many researchers to 

create and disseminate credible science  

- value replication studies along with “ground-

breaking” research  

Anderson et al. 2007; Nosek et al. 2012; 

O’Dea et al. 2021 

http://sortee.org 

https://sfdora.org/ 

 609 

* See SM text ‘Promising actions …’ for more details on practices. 610 

https://www.cos.io/initiatives/registered-reports
https://www.cos.io/initiatives/registered-reports
http://sortee.org/
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Figure Legends/Captions 611 

Fig. 1. Percentage of statistical tests that meet and do not meet the conventional 0.8 612 

threshold for statistical power. In A, we show a histogram of the standard error of the partial 613 

correlation coefficients (PCC) from ecological studies. All estimates to the right of the red line 614 

are under-powered at an 80% power threshold. n = 18,917 estimates from 354 studies. In B, we 615 

show what percentage of the 18,917 estimates would be underpowered for a range of PCC 616 

values.  617 

Fig. 2. The percentage of underpowered estimates from ecological studies that are 618 

exaggerated. In A, we show the percentage of estimates from underpowered studies that are 619 

exaggerated based on the weighted averages of adequately powered estimates in our sample of 620 

studies. Deflation refers to any estimate that is smaller than the hypothesized true effect, while 621 

the other categories represent exaggeration. n = 16,407 estimates from 330 studies with 622 

underpowered estimates. In B, we show what percentage of the 16,407 estimates would be 623 

exaggerated by 100% or more given a range of WAAP values.  624 

Fig. 3. Evidence of selective reporting of statistically significant results in (A) main text 625 

tables (n = 2,286 estimates), (B) supplemental text tables (n = 14,680 estimates), and (C) all 626 

tables (n = 16,966) in ecology publications. The solid black line is a fitted density kernel of the 627 

distribution of t-statistics. Each gray bar represents the density of studies with that t-statistic 628 

value. We present t-statistics up to 10 although there are higher values in our data. The red arrow 629 

points to the value at the conventional threshold of statistical significance (p<0.05). At that point, 630 

we would expect a smoothly decreasing line in the absence of selective reporting. 631 

  632 
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Fig. 4. The percentage of ecology studies that use multiple hypothesis testing. The gray 633 

section represents the percentage of studies that used multiple hypothesis corrections. n = 354 634 

studies. 635 

 636 

Fig. 5. The percentage of ecology studies which (A) have data available, and (B) provide 637 

code for their analyses. Bars are colored by journal. E – Ecology, EL – Ecology Letters, JOE – 638 

Journal of Ecology, N – Nature, S – Science.  n = 354 studies. 639 

  640 
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Supplementary Text 15 

 16 

Supplemental Figure 1. Unweighted distribution of (A) partial correlation coefficients (PCC) and (B) 17 

standard errors of the partial correlation coefficients calculated in our collection of studies. The weighted 18 

mean PCC value was 0.06, and the unweighted median is shown at the dashed line in A (~0.15). 19 

In both graphs, bars are colored according to the proportion of observational (green), 20 

experimental (gray), and combined (black) studies in that bin (n = 18,909 estimates from 353 21 

papers).  22 

 23 
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Promising actions that contribute to the larger-scale systemic changes that are needed  24 

Checklists & Data and Code Sharing Requirements 25 

We faced multiple challenges in aggregating the data from our set of published articles because 26 

studies often did not report key information. For example, determining sample sizes was not 27 

always straightforward. In some cases, we had to make assumptions about the total sample size 28 

when the authors ran different analyses but did not report changes in sample size across the 29 

analyses. We had to exclude 5,484 estimates from 34 studies because we could not determine the 30 

sample size that the researchers were using (see “Data Cleaning”). While it is likely that most 31 

ecologists do not intentionally leave out important information, leaving this information out 32 

makes it difficult to interpret the results or aggregate them into meta-analyses.  33 

So that readers may adequately judge the methods, analysis, and results in a study, ecologists 34 

should make sure to report all necessary information. Necessary information includes sample 35 

sizes and degrees of freedom for each analysis, estimates of error or uncertainty, and descriptions 36 

of the originally planned analyses and any deviations from those plans 1.  37 

Checklists at multiple stages of the publication process can help researchers and reviewers 38 

include necessary information 2–4. Checklists are used to reduce mistakes in other professions 39 

like surgery 5 and airplane piloting 6. Individual labs, departments, or professional societies can 40 

provide checklists to researchers for standardized information to report in all publications 2. 41 

More impactfully, journals can provide checklists that authors must fill out before submitting 42 

their manuscripts, similar to Nature (https://www.nature.com/documents/nr-reporting-summary-43 

flat.pdf). Further, reviewers can be provided checklists as well to standardize what they should 44 

be looking for when accessing the soundness of methods, analysis, and reported results 4. 45 

Checklists at the review stage may also reduce bias against negative results, which tend to be 46 

https://www.nature.com/documents/nr-reporting-summary-flat.pdf
https://www.nature.com/documents/nr-reporting-summary-flat.pdf
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scrutinized more than positive results 4,7. Overall, checklists should provide an easy way to 47 

increase the transparency of ecological publications and make it easier for readers to find the 48 

necessary information to synthesize effect sizes and uncertainty in those estimates.  49 

Researchers should also be required to provide data and code as a condition for manuscript 50 

publication (and the code should run with little or no manipulation). Exceptions can be allowed 51 

for some proprietary data. Many journals are moving towards encouraging data and code 52 

sharing, but few require archiving of both data and code 8. Such requirements do, however, seem 53 

to increase the likelihood of providing data and code. For example, in our dataset, every paper in 54 

Journal of Ecology had data available, which highlights the effectiveness of journals requiring 55 

data archiving once papers are accepted 56 

(https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies#archiving). Indeed, providing 57 

data and analytic code increases the transparency of workflows and conclusions reported in 58 

studies 1,9–11. Journals may even consider having a reviewer check code files to see if the study 59 

results are reproducible with the code and data that they authors provide (see, for example, the 60 

data editor positions at the American Naturalist [http://comments.amnat.org/2021/01/note-since-61 

fall-2020-robert-montgomerie.html], the Journal of Evolutionary Biology 62 

[https://jevbio.net/data-editing-at-jeb/ and http://comments.amnat.org/2021/01/note-since-fall-63 

2020-robert-montgomerie.html], and the American Economic Review 12). This extra step will 64 

further ensure the computational replicability of results, even at the potential monetary cost of 65 

this extra step.  66 

Pre-registration and Pre-Analysis Plans 67 

A pre-analysis plan describes the research questions, the study design, and the methods that will 68 

be used in a study. As its name suggests, the plan is completed before data analysis begins 69 

https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies#archiving
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcomments.amnat.org%2F2021%2F01%2Fnote-since-fall-2020-robert-montgomerie.html&data=05%7C01%7Cpferrar5%40jhu.edu%7Cb05646a8f751451c1f9608dac4012b2f%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638037806575676846%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=z8IE%2F7Jv%2Bi0iZiT9ZLFA8e32Qac4JDMWHrozpb%2BZuC4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcomments.amnat.org%2F2021%2F01%2Fnote-since-fall-2020-robert-montgomerie.html&data=05%7C01%7Cpferrar5%40jhu.edu%7Cb05646a8f751451c1f9608dac4012b2f%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638037806575676846%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=z8IE%2F7Jv%2Bi0iZiT9ZLFA8e32Qac4JDMWHrozpb%2BZuC4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fjevbio.net%2Fdata-editing-at-jeb%2F&data=05%7C01%7Cpferrar5%40jhu.edu%7Cb05646a8f751451c1f9608dac4012b2f%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638037806575676846%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2B7rEo9hoxtVbaigIDPofPqII1FCebrVoVkf2%2BMRhdYk%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcomments.amnat.org%2F2021%2F01%2Fnote-since-fall-2020-robert-montgomerie.html&data=05%7C01%7Cpferrar5%40jhu.edu%7Cb05646a8f751451c1f9608dac4012b2f%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638037806575676846%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=z8IE%2F7Jv%2Bi0iZiT9ZLFA8e32Qac4JDMWHrozpb%2BZuC4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcomments.amnat.org%2F2021%2F01%2Fnote-since-fall-2020-robert-montgomerie.html&data=05%7C01%7Cpferrar5%40jhu.edu%7Cb05646a8f751451c1f9608dac4012b2f%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638037806575676846%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=z8IE%2F7Jv%2Bi0iZiT9ZLFA8e32Qac4JDMWHrozpb%2BZuC4%3D&reserved=0
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(ideally, before all the data have been collected). Pre-registration is the process of registering, 70 

before the study or data analysis begins, a researcher’s intent to undertake a study and the study’s 71 

pre-analysis plan 13. Ideally, the pre-registration is digitally time-stamped and publicly available, 72 

so that third parties can confirm which questions and analyses were anticipated in advance and 73 

which were devised only after collecting, and perhaps analyzing, the data. To prevent competing 74 

researchers from “scooping” a study prior to its publication, pre-registration platforms typically 75 

allow researchers to keep their pre-registration private while the research is completed, although 76 

sometimes the length of this embargo is limited to several years 14. 77 

Preregistered analysis plans provide two main benefits. First, they help scholars quantify the “file 78 

drawer” problem: studies that were proposed, and perhaps completed, but never published. 79 

Studies may not be published for many reasons, but one reason is that the authors believed, or 80 

observed, that the results would not be acceptable to editors and peer (e.g., null results or 81 

statistically significant, but small estimated effects). Without pre-registration, scholars have no 82 

idea how many studies have been proposed and perhaps completed, but never published. That 83 

lack of knowledge can be costly for science; costly in terms of unnecessary repetition of studies 84 

and, when only serendipitously impressive results get published, exaggerated scientific claims. 85 

Knowing the full set of studies that may have been completed is also critical for ensuring that 86 

meta-analyses provide an accurate picture of what scientists have discovered 15. 87 

Second, pre-registered plans help scientists to be transparent in all their research decisions. 88 

Science benefits when scholars are limited in their ability to selectively report or frame their 89 

results after seeing the impact of their decisions on their results. For example, pre-registered 90 

plans help to clearly demarcate confirmatory analyses from exploratory analyses 13,14,16. 91 

Confirmatory analyses seek to test a specific hypothesis or estimate a specific parameter, 92 
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whereas exploratory analyses probe the data to look for interesting patterns. For example, a 93 

confirmatory analysis may seek to estimate the effect size of phosphorus addition on plant 94 

productivity, whereas an exploratory analysis may use the same data to see whether phosphorous 95 

addition is correlated with any other ecosystem functions that are measured in the data set. 96 

Exploratory analyses are important because they help scientists generate hypotheses that can then 97 

be tested with different data. Yet when exploratory analyses are repackaged in publications as 98 

confirmatory analyses, science suffers. Indeed, these repackages exploratory analyses never have 99 

the chance to be falsified and may need complex hypothesis to accommodate the results17.  A 100 

related problem is when an author, after seeing the results from an analysis, changes the 101 

hypothesis to better match the results (i.e., HARKing). Ideally, the author would report in the 102 

article that the published hypothesis was not the original hypothesis and thus readers should treat 103 

the analysis as more exploratory than confirmatory. With pre-registration, even if the author does 104 

not report this deviation from the original plan, a reviewer or reader of the article could easily 105 

check the study’s pre-registration document to confirm whether the hypotheses reported were the 106 

original hypotheses of the study 14,18. 107 

Although pre-registration and pre-analysis plans are commonly associated with experimental 108 

designs, they can, and ought to be, used for all study designs. In fact, given that observational 109 

designs typically offer many more degrees of researcher freedom than experimental analyses, 110 

pre-registered plans may be even more important in observational designs than experimental 111 

designs.  112 

Although journals and funders in ecology could require researchers to pre-register their studies 113 

and analysis plans 13,16, we believe the widespread adoption of pre-registration in ecology will 114 

take time because ecologists will need to become accustomed to working out details that often 115 
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were left for the post-data collection phase. When starting the preregistration process, it may be 116 

difficult for researchers to anticipate all the choices they will have to make during the analysis 117 

phase 16. For example, a researcher may not have decided what to do with outliers or how to 118 

transform skewed data. These additions to, and deviations from, the original plan can be 119 

incorporated into amendments to the pre-analysis plan and can be reported in the final 120 

publication. The point of preregistration is not to punish researchers for failing to anticipate an 121 

obstacle, but to promote transparency during all steps of the research process 13, especially when 122 

researchers may forget what the original plan was and what deviations were made. Ideally, all 123 

pre-analysis plans would be registered before a study begins, but what does pre-registration mean 124 

for ongoing studies? In cases in which data collection is ongoing, researchers should try to 125 

preregister their subsequent analyses before new data are collected. As new ideas arise for old 126 

datasets, pre-analysis should also be submitted even though some of the data may be known to 127 

the researchers 14.  128 

In ecology, pre-analysis plans ought to include detailed methodology that relates to several of the 129 

issues we describe above. For example, ecologists should include some reasoning about why 130 

they chose a specific sample size, including any design calculations that justify the sample size 131 

or elucidate the uncertainty within a study design (e.g., power analyses for frequentist 132 

methodologies, assurance analyses for Bayesian methodologies 19, or other design calculations 133 

20). In many cases, these design calculations will likely show that the number of replicates 134 

needed to credibly isolate signal from noise (e.g., power greater than 0.8) is logistically 135 

infeasible in terms of space, time, or money. Such conclusions do not mean that the studies 136 

should not be undertaken 21, but rather highlight the need for more coordination across study 137 

teams and a greater reliance on meta-analyses rather than single studies in ecology 15. Pre-138 
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analysis plans should also include rationale with respect to correcting or not for multiple 139 

hypothesis testing. As noted above, studies testing multiple hypotheses in ecology are common, 140 

but few papers correct for these comparisons or state why they chose not to use corrections. In 141 

some cases, a simple solution is to differentiate, in the pre-analysis plan, the “primary” 142 

hypothesis from the “secondary” hypotheses. This differentiation implicitly frames some planned 143 

analyses as confirmatory (primary hypothesis) and others as exploratory (secondary hypotheses).  144 

In sum, pre-registration and pre-analysis plans reduce, or at least make more transparent, the 145 

practices of HARKing, selective reporting of results, and presenting ex post exploratory analyses 146 

as if they were part of the original design 14. Some authors argue that pre-registration and pre-147 

analysis plans are unnecessary if scientists are transparent in all their decisions in their 148 

manuscripts and that they create an unnecessary barrier to conducting science 22. However, when 149 

clinical trials in heart, blood and lung treatments were required to be preregistered, the pattern of 150 

reported results changed dramatically: in comparison to findings reported before preregistration 151 

was required, the magnitudes of the reported treatment effects decreased substantially with a 152 

corresponding increase in the number of negative and null findings 23. 153 

Pre-registered plans do not limit science. Rather, they limit the ways scientific results can be 154 

reported. Ecologists should be encouraged to explore their data or frame the results in ways that 155 

were not originally envisioned – but ecologists should also be required to report those deviations 156 

and the scientific community should have a way to confirm that those deviations are reported. 157 

Pre-registration and pre-analysis plans help to achieve this goal. 158 

Registered Reports & Results-Blind Reviews 159 
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Another step towards increased transparency is Registered Reports – a two stage review process 160 

(https://www.cos.io/initiatives/registered-reports). During the Registered Report process, an 161 

introduction and methods section outlining the study design and analysis are submitted for peer 162 

review. The merit of the study is judged based on the question being asked and the methods used 163 

to address that question, rather than the sign, magnitude, or statistical significance of the results. 164 

After a study is accepted in the first phase of the review process, reviewers in the second phase 165 

judge how closely the study follows the original plan and whether any deviations are substantial 166 

enough to affect the study quality 24.  167 

Registered Reports should reduce selective reporting of results. Studies have shown that 168 

registered reports decrease the amount of positive findings compared to conventional publication 169 

practices 25,26. Registered reports should also help reviewers focus on the importance of the 170 

questions asked and quality of the study design, rather than the sign, magnitude, and statistical 171 

significance of the results. Indeed, a study found that researchers rated Registered Reports as 172 

being more rigorous in methodology and analysis, while not reducing novelty or creativity 173 

compared to non-Registered Report publications 27. By emphasizing research questions and 174 

designs, registered reports make it more likely that ecologists can abandon NHST based on 175 

simple binary rules to decide when an estimate is ecologically relevant (e.g., if p<0.05 or Bayes 176 

Factor > 3), a practice that warps the presentation and interpretation of empirical results 28–32. 177 

While Registered Reports are growing in popularity, few ecology publications are in this format. 178 

Currently, 12 ecology-related or general interest journals offer a Registered Reports option for 179 

submitting manuscripts (https://www.cos.io/initiatives/registered-reports; Supplemental Table 1). 180 

While the option for submitting Registered Reports has been around for several years at some 181 

journals, it seems that few researchers are aware of or using the process. For example, 182 

https://www.cos.io/initiatives/registered-reports
https://www.cos.io/initiatives/registered-reports
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Conservation Biology has published three Registered Reports, Ecology and Evolution has 183 

published only one, and none have been received at the Journal of Plant Nutrition and Soil 184 

Science. These journals are leading the way on Registered Reports, but there may need to be 185 

other incentives to have this publication format become more popular. For example, funding 186 

agencies could require this format, journals could spotlight these types of publications, or 187 

departments could require or up-weight publications in this format for career advancement. A 188 

preliminary written dissertation plan, where students’ ideas and methods are critiqued by faculty, 189 

is already almost in the Registered Report format 16. Thus, moving from the status quo towards 190 

greater use of Registered Reports is feasible and could be easily adopted for both early and later-191 

career researchers. 192 

Supplemental Table 1. Ecology or general interest journals that offer Registered Report format as of January 193 

16, 2023.  194 

Journal Name Website 

BMC Biology https://bmcbiol.biomedcentral.com/ 

Ecology & Evolution https://onlinelibrary.wiley.com/journal/20457758 

Ecological Solutions & 

Evidence 
https://besjournals.onlinelibrary.wiley.com/journal/26888319 

Environment International 
https://www.journals.elsevier.com/environment-

international/ 

Frontiers in Plant Science https://www.frontiersin.org/journals/plant-science# 

Journal of Plant Nutrition and 

Soil Science 
https://onlinelibrary.wiley.com/journal/15222624 

Nature Communications https://www.nature.com/ncomms/ 

PeerJ Life and Environment https://peerj.com/life-environment/ 

https://onlinelibrary.wiley.com/journal/15222624
https://onlinelibrary.wiley.com/journal/15222624
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PLoS Biology https://journals.plos.org/plosbiology/ 

PLoS One https://journals.plos.org/plosone 

Royal Society Open Science http://rsos.royalsocietypublishing.org/ 

Scientific Reports https://www.nature.com/srep/ 

 195 

Similar to Registered Reports, results-blind reviews are another option to reduce publication bias 196 

against negative results 33. In fact, results-blind reviews may be a good first step because they are 197 

closest to the current review process. Unlike Registered Reports where the study only starts after 198 

the first review, researchers submitting a results-blind review may have completed the study and 199 

written a complete manuscript – they simply do not include the results as part of the submitted 200 

manuscript. Like Registered Reports, results-blind review can reduce reviewer bias against 201 

negative results and can mitigate the pressure to engage in NHST guided by binary decision 202 

rules. Unlike Registered Reports, however, it has no mechanism in place to reduce selective 203 

reporting of results by the authors 14,24,33. 204 

Changing Incentives 205 

 In the “publish or perish” environment in which many researchers operate, the benefits of 206 

engaging in these best practices are unlikely to exceed the costs without buy-in from the 207 

institutions that matter - namely, employers, funders, and publishers. For example, funding 208 

agencies could prioritize studies that use Registered Reports, such that high-profile grant 209 

programs reinforce best practices in ecology. Employers should explicitly encourage examples of 210 

credible, reproducible research and could require the practices outlined above for career 211 

advancement in a way that, as a metric of success, puts best practices on par with number of 212 

publications and impact factors of journals.  213 
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Among the practices that should be encouraged by employers, funders and publishers are 214 

replications of prior studies. Despite prior publications on the importance of replications 11,34, 215 

one study found replications were rare in ecology 35. Employers should value researchers who 216 

replicate studies just as much as researchers who find novel results. High impact journals can 217 

help make replications more professionally rewarding by publishing replications alongside of 218 

ground-breaking research. 219 

Without a change in researcher incentives it is difficult to imagine that a change in research 220 

practices will happen on its own – despite how much scientists value credibility within their 221 

discipline 36. Unfortunately, researchers’ professional incentives to publish novel and exciting 222 

studies are often at odds with their personal values of creating and disseminating credible science 223 

2,36,37. In fact, an ecology researcher who unilaterally adopts these practices may find herself at a 224 

disadvantage in the competition to place studies in high impact journals.  225 

  226 
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