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Abstract

In the United States, agriculture is responsible for the majority of consumptive wa-

ter use. In an effort to reduce water use in water scarce regions, policymakers have

implemented a number of costly interventions. These interventions range from land

retirement to subsidies that encourage the adoption of efficient irrigation technolo-

gies. In non-agricultural contexts, costly policy interventions have been comple-

mented by low-cost interventions inspired by behavioral economics. Whether these

behavioral interventions are effective in the context of commercial farming is not well

understood. In a pre-registered, randomized field intervention, we estimate the im-

pact of social (peer) comparisons on agricultural groundwater user in Colorado and

Kansas. Over three thousand irrigators were randomized to receive either an annual

peer comparison or no comparison. The peer comparison contrasted each irrigator’s

groundwater use to the distribution of use by neighboring irrigators. The comparison

intervention reduced average annual groundwater use by 4.05% [95% CI (-5.87%, -

2.21%)], resulting in an aggregate reduction of more than 27,000 acre-feet per year

at a cost less than $0.10 per acre-foot conserved. The estimated treatment effect was
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larger among irrigators with lower pre-intervention water use. The results imply that

social comparisons can be a cost-effective tool, alongside other policy interventions,

aimed at reducing agricultural water use.



1 Introduction

To design and implement policy interventions to manage natural resources and environ-

mental goods, scholars and practitioners are increasingly leveraging insights from the

behavioral sciences (Carlsson and Johansson-Stenman, 2012; Croson and Treich, 2014;

Yoeli et al., 2017; Palm-Forster et al., 2019; Carlsson et al., 2021). In a parallel literature,

scholars and practitioners are drawing on lab and field experiments to better understand

how economic agents interact with environmental goods and natural resources (Allcott

and Mullainathan, 2010; Hahn and Metcalfe, 2016; Andor and Fels, 2018; Slough et al.,

2021).

We build on these two literatures by implementing field experiments that test the

impact of social comparison messaging on groundwater use in Colorado and Kansas. In-

spired by research in social psychology (Festinger, 1954), social comparisons combine in-

junctive and descriptive normative messages to induce individuals to change their behav-

ior. Injunctive norms refer to perceptions of what ought to be, while descriptive norms

refer to perceptions of what is (Cialdini et al., 1990).

The literature on the effectiveness of social comparisons focuses on consumer behav-

iors across a range of environmental and non-environmental contexts. These contexts

include residential water and electricity consumption (Allcott, 2011; Ayres et al., 2012;

Bernedo et al., 2014; Brent et al., 2015; Bhanot, 2017; Ferraro et al., 2017; Torres and

Carlsson, 2018; Jessoe et al., 2021a), retirement savings (Beshears et al., 2015), towel

reuse in hotels (Goldstein et al., 2008), voting (Gerber and Rogers, 2009), and charita-

ble giving (Frey and Meier, 2004; Shang and Croson, 2009). Evidence of the efficacy

of social comparison messaging in curbing household water and electricity demand has

prompted some regulators to consider social comparison interventions as demand man-

agement tools (e.g., Oracle’s OPower product).

Much less attention, however, has been paid to understanding how social comparisons

may affect producer behaviors (Wallander et al., 2017; Chabé-Ferret et al., 2019; Earnhart
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and Ferraro, 2020).1 While consumer behaviors have important effects on the quality and

quantity of environmental goods and natural resources, producer behaviors are also im-

portant. In particular, agricultural producers play an important role in maintaining wa-

ter quality, supporting biodiversity, and determining groundwater stocks (Riseng et al.,

2011; Famiglietti, 2014; Van Meter et al., 2018; Tsioumani, 2019).

A growing reliance on groundwater to irrigate crops has led to rates of groundwater

pumping in excess of natural recharge, causing groundwater depletion in many of the

world’s most important and productive aquifers (Konikow and Kendy, 2005; Konikow,

2011; Bierkens and Wada, 2019). To curb groundwater overdraft, policy-makers are con-

sidering a range of regulations and policies (e.g., pumping taxes, quantity restrictions,

irrigated land and well retirement). However, many of these policies impose significant

costs on the irrigated agricultural sector or require significant government expenditures,

which raises questions regarding the feasibility of widespread implementation (Feiner-

man and Knapp, 1983; Nieswiadomy, 1985; Guilfoos et al., 2016; Hrozencik et al., 2017;

Tsvetanov and Earnhart, 2020; Manning et al., 2020). Taxes and quantity restrictions im-

posed by local districts can be effective at decreasing water use without a large decrease

in irrigated area (Smith et al., 2017; Drysdale and Hendricks, 2018; Deines et al., 2019),

but it is unclear that these measures will be widely adopted without significant threats by

state regulators (Perez-Quesada and Hendricks, 2021). The potentially negative impacts

of continued aquifer depletion paired with the costs associated with traditional policy op-

tions motivates a need to evaluate the impact of behavioral interventions in the context

of agricultural groundwater use (Edwards and Guilfoos, 2020).

This paper addresses this need by reporting results from a randomized controlled

trial (RCT) that tests the effectiveness of social comparison messaging among irrigated

agricultural producers in the High Plains (Ogallala) Aquifer (HPA) region of the U.S.

1Reeves (2012) and Sacarny et al. (2016) analyze the impact of social comparisons among medical doc-
tors. However, whether the doctors in these experiments are employees (agents) or firms (principals) is
unclear.
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The HPA is the most intensively pumped aquifer in the U.S. and irrigated agriculture

is responsible for 95% of all withdrawals (Lovelace et al., 2020). Withdrawals from the

HPA generate significant value for the U.S. agricultural economy. Suárez et al. (2018)

estimate that the HPA annually contributes $3 billion dollars to domestic agricultural

production. The extensive use of the HPA to support irrigated agriculture has led to large

declines in groundwater stocks across the region and the most significant depletion rates

among all domestic aquifers used primarily for agricultural purposes (Konikow, 2015).

Haacker et al. (2015) predict the end of economically feasible groundwater-fed irrigated

agriculture by 2050 for some regions of the HPA.

In a pre-registered, randomized controlled field experiment, over 1,600 irrigators in

Colorado and Kansas were randomly selected to receive social comparisons annually for

two or three years (link). The comparisons, which were delivered by mail prior to the

growing season, compared the recipient’s irrigation water use in the previous year to the

overall distribution of irrigation water use in the recipient’s groundwater management

district (Colorado) or county (Kansas). Colorado irrigators received mailers prior to the

2019, 2020, and 2021 growing seasons while Kansas irrigators received mailers prior to

the 2020 and 2021 growing seasons.

Using administrative data from well meters, we estimate that recipients of the social

comparisons, on average, used 4.05% [95% CI (-5.87%, -2.21%)] less water than non-

recipients in the control group. In our pre-registered analysis of heterogeneous treatment

effects, we also find larger estimated treatment effects among irrigators with lower pre-

intervention water use.

The estimated reduction from the social comparison is modest, but economically sig-

nificant, implying a reduction of 6.5 acre-feet per year for the median irrigator and an

aggregate annual reduction in groundwater use of more than 27,000 acre-feet, at a cost

less than $0.10 per acre-foot conserved. That cost is orders of magnitude less than other

groundwater conservation policies implemented in the study area. For example, Tsve-
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tanov and Earnhart (2020) report that the annual program costs of a well retirement

program in Kansas were $17.26 per acre-foot conserved.

The cost-effectiveness of the social comparisons in our study highlights how interven-

tions inspired by behavioral economics may have a role alongside traditional agricultural

and environmental policies. More broadly, our results suggest that interventions that

have been reported to influence consumer behavior may also be effective in influencing

producer behavior. As documented by Ferraro et al. (2022), behavioral experiments in

which the units of randomization are producers (i.e., firms) operating in competitive en-

vironments are extremely rare.

Our study also advances the behavioral and experimental literature by using large

sample sizes from multiple regions of the country. In economics (Ioannidis et al., 2017),

including environmental economics (Ferraro and Shukla, 2020) and agricultural eco-

nomics (Ferraro and Shukla, 2022), empirical designs with insufficient statistical power

are widespread and can lead to both undetected and exaggerated estimated effect sizes.

Achieving sufficient statistical power to detect the small effect sizes reported in the so-

cial comparison literature is particularly challenging (Allcott, 2011; Ayres et al., 2012;

Bernedo et al., 2014; Brent et al., 2015; Bhanot, 2017; Ferraro et al., 2017; Torres and

Carlsson, 2018; Jessoe et al., 2021a). For example, our study is most closely related to

Chabé-Ferret et al. (2019), who assess the impacts of a social comparison intervention

implemented among French irrigators receiving surface water from a regional supplier.

They fail to detect a difference between treatment and control groups, but their sample

size of 200 irrigators is insufficient to precisely estimate small, but economically rele-

vant, differences. In contrast, our study with more than 3,000 irrigators was designed

to detect effect sizes as small as 3% with 80% power (5% Type 1 error rate). Our large

sample size from multiple regions also helps address a common criticism regarding lab

and field experiments: weak external validity. This criticism posits that insights gener-

ated by experiments often do not generalize to other settings with different attributes
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(Roe and Just, 2009; Deaton, 2010; Barrett and Carter, 2020; Ferraro and Agrawal, 2021).

By implementing our experiment across multiple counties in two states with differing

institutional and environmental attributes, we mitigate this criticism.

The paper is organized as follows. Section 2 provides additional context for both the

Colorado and Kansas study areas. Sections 3 and 4 discuss the design of the field exper-

iment and present the econometric model used to assess the impact of the intervention.

Finally, sections 5 and 6 present the results of the experiment and discuss their signif-

icance to the literature and to broader efforts to promote natural resource conservation

and stewardship.

2 Background

The HPA is a vast groundwater resource underlying eight states. Pumping from the HPA

accounts for nearly 15% of all groundwater use in the U.S. (Lovelace et al., 2020). The

HPA is divided by the 100th meridian that historically separates the humid east from

the arid west. That division generates varying climatic conditions along an east-west

gradient. The easternmost sections of the HPA in Kansas and Nebraska receive, on av-

erage, in excess of 16 inches of precipitation throughout the growing season (PRISM,

2021). Meanwhile, in the western regions of the aquifer, such as Colorado and Wyoming,

there is generally less than 10 inches of precipitation during the growing season. The

current and predicted future availability of groundwater resources varies significantly

across the HPA. Some regions are predicted to reach depletion levels not able to sus-

tain groundwater-fed irrigated agriculture by 2050, while other regions have sufficient

groundwater stocks to support irrigation for another thousand years or more (Haacker

et al., 2015; Steward and Allen, 2016).

The depletion of the HPA has prompted growing interest in managing the region’s

shared groundwater resources. Interventions to address the depletion of the HPA have
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varied in approach and efficacy. Early efforts focused on subsidizing the adoption of ef-

ficient irrigation technology. However, the effectiveness of these efforts in curbing water

use has been questioned by Pfeiffer and Lin (2014) who find that increases in irriga-

tion efficiency do not necessarily generate water conservation as producers respond to

increased application efficiency by adjusting along other margins (e.g., irrigating more

land). More recently, groundwater conservation efforts have focused on implementing

pumping quantity restrictions and well retirement programs. For example, some regions

of Kansas and Nebraska have enacted pumping quantity restrictions (Montginoul et al.,

2016; Drysdale and Hendricks, 2018). While these efforts have proven effective in re-

ducing groundwater overdraft, pumping quantity restrictions remain relatively scarce

throughout the HPA. The scarcity of groundwater pricing and use regulations may relate

to the relatively high economic and political costs imposed by these policies on the irri-

gated agricultural sector and policy-makers. Finally, federal and state governments have

jointly funded well retirement programs in the HPA region to pay agricultural produc-

ers to take wells and irrigated lands out of production (Monger et al., 2018; Rosenberg,

2020; Tsvetanov and Earnhart, 2020). Specifically, the U.S. Department of Agriculture’s

(USDA) Conservation Reserve Enhancement Program (CREP) partners with state and lo-

cal agencies to tailor conservation initiatives to local needs. In the HPA region, CREPs

in Colorado, Kansas, and Nebraska address groundwater depletion concerns by paying

groundwater users to retire their water rights and/or take irrigated lands out of produc-

tion. Rosenberg (2020) and Manning et al. (2020) analyze the Kansas CREP and find that

federal and state investments in well retirement yield groundwater conservation bene-

fits but that the benefits likely do not outweigh the budgetary costs associated with the

investments.

Figure 1 maps the extent of the HPA and highlights the study area regions where the

social comparison interventions were introduced. Specifically, we focus on regions of the

Colorado and Kansas HPA under the jurisdiction of Groundwater Management Districts
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(GWMD). The remaining text in this section focuses on the institutional, climatic, and

hydrological contexts of the Colorado and Kansas field experiment locations.

[Figure 1 about here.]

2.1 Background: Colorado

The Colorado field experiment focuses on groundwater irrigators in the Republican River

Basin (RRB), which is a hydrologically connected sub-basin of the HPA. Corn, wheat,

alfalfa, and dry beans are the most commonly irrigated crops in the RRB accounting

for more than 92% of total irrigated land in the region during the 2021 growing season

(CODNR, 2021). The Colorado Groundwater Commission (CGWC) is responsible for ad-

judicating groundwater rights and issuing use permits in the RRB. Use permits designate

an annual volumetric appropriation although in practice these appropriations are not

binding.2 No formal well drilling moratoria or well spacing rules exist in the RRB. How-

ever, an informal well drilling moratoria does exist to some extent as the CGWC has not

issued a new well permit since 2003. Seven local GWMDs manage the aquifer resources

of the RRB of Colorado (see figure 1). Groundwater pumping in the RRB is unpriced

and irrigators only pay the marginal cost associated with energy used to extract ground-

water. There are no pumping quantity restrictions in the RRB outside of the volumetric

appropriations associated with each well permit.

2.2 Background: Kansas

The Kansas field experiment concentrates on groundwater irrigators within the state’s

GWMDs (sometimes referred to as GMDs in Kansas). The HPA underlies all of the

2The volumetric groundwater appropriations associated with Colorado well permits were assigned
when the permits were first issued. Changes in irrigation technology (e.g., the advent of center pivot
irrigation) have rendered nearly all volumetric appropriations non-binding. For example, between 2011
and 2020, average well-level volumetric appropriations exceeded annual observed pumping by between
120 and 230 acre-feet depending on the year.
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GWMDs that are located in western and central Kansas (see figure 1). The Kansas field

experiment focuses on groundwater irrigators in 4 of the state’s 5 GWMDs, which were

created after the passage of legislation in 1972 (Kansas Statutes Annotated 82a-1027).

Ongoing legal issues in GWMD 5 precluded including irrigators from that GWMD in the

field experiment. The most commonly irrigated crops in Kansas are corn, wheat, alfalfa,

soybeans, and sorghum, which jointly account for more than 88% of all irrigated acreage

in the study area in 2021. To manage groundwater resources, Kansas’s GWMDs initially

used moratoria on well drilling and regulations on well spacing (Edwards, 2016). The

passage of legislation in 2012 extended the statutory authorities of Kansas’s GWMDs to

allow for the creation of Local Enhancement Management Areas (LEMA). LEMAs allow

GWMDs to develop their own more localized groundwater conservation plans, which

are enforced by the state. There were three LEMAs in place during our intervention in

Kansas. The Sheridan 6 LEMA began in 2013 and mandates significant reductions in wa-

ter use, but is only the size of about 10% of a county. The GWMD 4 LEMA began in 2018

and covers a large area but allocations in the LEMA are often greater than historical use

(Perez-Quesada and Hendricks, 2021). The Wichita County LEMA began in 2021 and

imposes roughly a 25% reduction from historical use.

3 Experimental Design

In this section, we begin with a brief overview of the features of the experimental design

that are common to the RCTs in both states. We then describe features that are specific to

each state.

The target population for the experiment were owners or operators of groundwa-

ter wells that were permitted for irrigation and located in Colorado or Kansas. Multi-

ple wells can be owned or operated by one individual/entity. To minimize inter-well

spillovers (a.k.a., contamination), the assignment to treatment and control groups oc-
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curred at the well owner/operator level, not the well level (i.e., clustering the random-

ization at the individual/entity who controlled the wells reduced the potential for the

treated wells to influence outcomes among the control wells). To associate wells with

well owners/operators and their addresses, we used databases maintained by Colorado

and Kansas. In some cases, multiple well owners/operators shared the same physical

address. In these cases, we merged all well owners/operators sharing an address unit

before assignment to treatment or control groups. Well owner/operator assignment to

treatment and control groups is static over time (i.e., assignment to the treatment and

control groups remains constant over the course of the experiment).

Prior to the beginning of the growing season, well owners/operators in the treatment

group received a mailer with social comparison information. Control group well own-

ers/operators received no mailer. The treatment mailers provided the recipient with well-

level comparison information. Some producers owned/operated more than three wells,

but the size constraints of the mailer led us to limit the well-level comparison informa-

tion to the three wells that utilized the most water in the previous year. Figure 2 presents

the distribution of well ownership patterns for Colorado and Kansas. Approximately

81% and 70% of Colorado and Kansas well owners/operators, respectively, own/operate

3 wells or less. Our primary analysis of the intervention’s effect focuses only on wells

that received comparison information or would have received comparison information if

their owner/operator were in the treatment group. However, we also explore whether

treatment affected those wells owned by treated owners/operators that did not receive

comparison information.

[Figure 2 about here.]

Social comparison interventions typically combine a descriptive and injunctive norm

(Ferraro et al., 2011; Jessoe et al., 2021b). To provide the injunctive norm, the treatment

group mailers included the following statement:
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Efficient water use is essential to managing our shared water resources.

Prior studies report that messages with injunctive norms alone nudge individual decision

making toward pro-social behavior, but the effect is larger and persists longer when the

injunctive norm is combined with a descriptive norm (Schultz et al., 2007; Ferraro et al.,

2011). To provide a descriptive norm, the mailer graphically illustrated how the water

consumption of the recipient’s wells compared to water consumption by all wells in the

comparison group. To provide this illustration, the mailer contrasted the water use of

the recipient’s wells in the previous year to the water use of the well at the 50th and 20th

percentiles in the comparison group. Using text, rather than graphics, the mailer also

reported the exact percentile of the well using the following language:

Comparing your [year] water use to other wells in the [comparison group], your

well(s) recorded use higher than X% of wells.

Figure 3 presents examples of both the Colorado and Kansas mailers. The Colorado

mailer was sent by the Department of Agricultural and Resource Economics at Colorado

State University (CSU) and branded with CSU insignia. The Kansas mailer was sent by

the Department of Agricultural Economics at Kansas State University (KSU) and branded

with KSU insignia. The experimental protocols for both experiments were submitted

to the universities’ relevant Institutional Review Boards (IRB). At both universities, the

experiments were deemed ‘not human subject research’ because no new data would be

collected in the experiments.

[Figure 3 about here.]

To randomly assign well owners/operators to treatment and control groups, we blocked

on the comparison group and past water use. The choice of which variables to use for the

block randomization procedure was determined by modeling which variables best pre-

dict past observed water use (see registered pre-analysis plan for more information). To

10



measure past water use in Kansas, we used the state’s Water Information Management

and Analysis System (WIMAS). To measure past water use in Colorado, we used data re-

ported by the state’s Department of Natural Resources. Both data systems record annual

water use and irrigated acreage, but the acreage data in Colorado are not available until at

least a year after a given growing season. To block randomize on past water use, we cre-

ated a dummy variable, Hi −Useown/opi , which compares an individual owner/operator’s

past water use to water use in their comparison group. Specifically, Hi −Useown/opi equals

one if the well owner/operator’s pre-experiment annual average water use across all their

wells exceeds their comparison group’s pre-experiment annual median water use and

zero otherwise.

Power analyses aided the design of both the Colorado and Kansas interventions such

that both experiments had the necessary statistical power to detect a 3% or greater reduc-

tion in water use. Pre-experiment power analyses were conducted with covariate control

and assumed statistical power of 0.8 and α of 0.05 (see registered pre-analysis plan ‘Sup-

porting Documents and Materials’ for more information). Table 1 presents summary

statistics related to water use and growing season weather conditions for Colorado and

Kansas treatment and control group wells between 2011 and 2021.

[Table 1 about here.]

Spatial patterns of well ownership/operation and data availability/quality issues cre-

ated several experimental design challenges. First, a sizable proportion of irrigated agri-

cultural land and associated wells in Colorado and Kansas are rented. Ideally, comparison

mailers would be sent to the agricultural producer making water use decisions during the

experiment. Identifying the well operator is possible in Kansas but not in Colorado. In

Kansas, we define the well operator as the individual/entity that submitted the water

use report, which is recorded in WIMAS. In contrast, Colorado does not regularly collect

information on irrigated land rental patterns and the data linking operators to irrigated

land/wells is dated. Given the likelihood that irrigated land rental patterns evolve over
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time while ownership remains relatively constant, we opted to send comparison mailers

in Colorado to well owners, which include both operators and non-operator landlords

(Bawa and Callahan, 2021). The second design challenge arises because some well own-

ers/operators in both states had wells in multiple comparison groups. For these well

owners/operators, their comparison group in the social comparison intervention was the

GWMD/county within which the majority of their wells were located. The third design

challenge arises because of errors or spelling variations in mailing addresses, which can

prevent treated units from being exposed to treatment (i.e., non-compliance). Some ad-

dresses associated with well owners/operators were faulty or outdated, resulting in treat-

ment mailers being returned by the postal service. Moreover, variations in abbreviation

rules within the address data resulted in some well owners/operators receiving multiple

mailings. In other words, a common address with spelling variations was viewed as two

addresses.3 This error, in some cases, led to a well owner/operator showing up more

than once in the treated group (i.e., multiple mailers) or in the control group. In other

cases, this error led to a well owner/operator being assigned to both treatment and con-

trol groups. We address this issue by dropping all wells associated with owners/operators

assigned to both treatment and control groups from our subsequent analysis.

3.1 Experimental Design: Colorado

We identified 973 eligible well owners that collectively owned 2,658 wells in seven GWMDs.

Comparison groups for the Colorado intervention were based on GWMD boundaries.

The block randomization protocol resulted in 14 mutually-exclusive blocking groups (7

3A common example involves abbreviating or spelling out County Road (i.e., C.R. vs. County Road).
For example, the address database contains two entities Big Farm LLC. and Bigger Farm LLC. with associ-
ated addresses of 123 County Road 4, Yuma, CO and 123 C.R. 4, Yuma, CO. Since C.R. is an abbreviation
of ‘County Road,’ these two entities share a common address and should have been classified as a single
treatment unit. Instead, when assigning well owners/operators to treatment and control groups these en-
tities were sometimes treated as separate. Ideally, these duplicates would have all been identified prior to
randomization to treatment and control groups. However, we discovered these duplicated addresses after
assignment to treatment and control.
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GWMDs X 2 pre-treatment water use groups).

Before randomizing well owners into treatment and control groups, we dropped out-

lier wells based on criteria described in the experiment’s preregistration. Specifically,

we dropped any wells that used less than their comparison groups 5th percentile in the

growing season before the experiment began (2018). We excluded these lower water use

wells from the experiment given the likelihood that these wells were used for different

purposes (i.e., watering livestock) than the targeted experiment population (i.e., irriga-

tion). This issue is prevalent in Colorado where well permits can designate multiple uses

(i.e., irrigation and livestock watering). Winnowing Colorado well observations based on

these criteria resulted in 967 well owners associated with 2,529 wells. The number of

eligible well owners decreased because in several cases all of the wells associated with a

given well owner met the 5th percentile outlier criteria. Implementing the randomization

procedure among the 967 eligible Colorado well owners resulted in a control group com-

prised of 484 well owners associated with 1271 wells and a treatment group comprised

of 483 well owners associated with 1258 wells.

Prior to the 2019, 2020, and 2021 growing seasons, Colorado well owners in the treat-

ment group received mailers that provided information comparing their well-level water

use in acre-feet in the previous growing season to other wells in their comparison group.4

Comparisons were in total water used rather than water used per acre because the irri-

gated acreage data from the previous growing season did not appear in the state database

until after the current growing season started. In the mailer, each individual well was

identified by both its water diversion identifier (WDID) and its well permit number.

We limited the data used to evaluate the impact of the Colorado intervention accord-

ing to attrition rules outlined in the experiment’s pre-analysis plan. Specifically, we drop

4An error while printing the mailers sent to Colorado well owners prior to the 2019 growing season
resulted in mismatched addresses and water use data. A corrected mailing was subsequently sent before
the 2019 growing season started. The correct mailing provided the correct information as well as a message
stating “Due to a printing error, the information in the mailer you received previously may have been
incorrect. We apologize for the error and are now sending a correction.”
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any well observations that cease to pump or report water use after treatment randomiza-

tion. Filtering the Colorado data based on these attrition criteria results in 957 well own-

ers associated 2,497 wells remaining in the sample which translates into approximately

a 1% attrition rate among both well owners and wells. Dropping these wells implicitly

assumes these observations are missing independent of potential outcomes (MIPO). We

further constrain the Colorado data by dropping any wells associated with a well owner

that was incorrectly placed in both treatment and control groups due to address abbre-

viation errors. This results in a total of 863 well owners associated with 2,203 wells

remaining in the Colorado data. Among these remaining well owners and wells, 431 well

owners associated with 1,105 wells make up the control group while the treatment group

consists of 432 well owners and 1,098 wells. Of these 2,203 total remaining wells, 1,614

wells were eligible to receive comparison information based on predefined rules limit-

ing comparison information to a well owner’s top three wells. The treatment compliance

rate i.e., the share of treatment group mailers successfully delivered, for the Colorado

experiment was 88%.

3.2 Experimental Design: Kansas

We identified 2,828 eligible well operators in Kansas that collectively own 10,243 wells.5

Given that Kansas’s GWMDs are relatively large and heterogeneous in terms of precip-

itation and groundwater availability, we opted to use counties to formulate the compar-

ison groups. Several counties in Kansas contain less than 50 wells. To avoid disclosing

personal information in the comparison mailers, we join these counties with fewer than

50 wells to adjacent counties to form a comparison group of 2 counties. In total this

results in 4 of the 25 comparison group counties being aggregations of two counties.

5Kansas does not collect data on water use strictly at the well-level. Rather, water use data is collected
at the water right level which can in some cases be an aggregation of several wells. For this experiment, we
consider a ‘well’ to be a unique combination of water right number, water right identifier, and person iden-
tifier. When multiple water diversion records are associated with the same ‘well’ these diversion records
are aggregated.
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The Kansas experiment’s block randomization process resulted in 50 mutually-exclusive

blocking groups (25 counties X 2 pre-experiment water use groups).

Before randomizing well operators into treatment and control groups, we dropped

outliers wells based on criteria described in the experiment’s preregistration. Specifi-

cally, we dropped all wells that reported groundwater use (in acre-feet per acre irrigated)

greater than the 99th percentile of all Kansas wells during the pre-experiment growing

season (2019). Additionally, we excluded all wells that reported irrigating more than 640

acres during the pre-experiment growing season. We excluded these high use wells from

the Kansas experiment given the likelihood of inaccurate irrigated acreage or water use

reporting. This is important for the Kansas experiment as in 2020 the state began using a

new web-based system for water use reporting which allowed for more timely reporting

of water use but may have introduced additional data entry errors. Winnowing Kansas

wells observations based on these acreage and water use criteria resulted in 2,767 well

operators associated with 9,605 wells. The number of eligible well operators decreased

because in some cases all the wells associated with a given well operator failed to meet

our predefined criteria. Implementing the randomization procedure among these 2,767

well operators resulted in a control group comprised of 1,381 well operators associated

with 4,766 wells and a treatment group made up of 1,386 well operators associated with

4,839 wells.

Prior to the 2020 and 2021 growing seasons, Kansas’s treatment group well operators

received mailers providing recipients with information comparing their well-level water

use in acre-feet per acre irrigated in the previous growing season to other well’s within

their comparison group. Individual well records were identified in the mailers using

water right numbers (WRN) and the public land survey system section, township, and

range of the parcel of land where the well is located.

We limited the data used to analyze the effect of the Kansas intervention according

to the attrition rules outlined in the experiment’s pre-registration. For the Kansas ex-
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periment, we define attrition as either a well ceasing to pump or report water use after

treatment randomization or the individual/entity reporting a well’s water use changing

(i.e., a change in the well’s ownership or rental status) after treatment randomization. Fil-

tering Kansas well observations based on these attrition criteria results in 2,596 well op-

erators associated with 8,863 wells which translates into approximately 6% and 8% attri-

tion rates among well operators and wells, respectively. Dropping these wells implicitly

assumes these observations are missing independent of potential outcomes (MIPO). We

further constrain the Kansas data by dropping any wells associated with a well operator

that was incorrectly placed in both treatment and control groups due to address abbre-

viation errors. This results in a total of 2,378 well operators associated with 7,733 wells

remaining in the Kansas data. Among these remaining well operators and wells, 1,183

well operators associated with 3,839 wells make up the control group while the treatment

group consists of 1,195 well operators and 3,894 wells. Of these 7,733 total remaining

wells, 4,605 wells were eligible to receive comparison information based on predefined

rules limiting comparison information to a well operator’s top three wells. The treatment

compliance rate i.e., the share of treatment group mailers successfully delivered, for the

Kansas experiment was 96%.

4 Empirical Model

To estimate the treatment effect of the social comparison mailer on groundwater pumping

behavior, we leverage a rich panel data set of well-level annual water use from 2011 to

2021. Specifically, we estimate the following pre-registered econometric model:

log(wi,j,t) = β ∗ T reatmentj,t +αi +γ ∗Xi,j,t + εi,t. (1)

The dependent variable, log(wi,j,t), is log transformed annual total water use by the ith

well associated with the jth owner/operator in year t. T reatmentj,t is a dummy variable
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which equals one if the jth owner/operator of the ith well received a mailer in year t

communicating comparison information for the ith well. β is the primary coefficient of

interest which estimates the average treatment effect of the intervention. As the com-

parison intervention provided information for at most three wells, our primary analysis

excludes treatment group wells that did not receive comparison information and control

group wells that would not have received comparison information if they were assigned

to the treatment group. In later analysis, we evaluate how treatment affects pumping

behavior among treatment group wells that did not receive comparison information. αi

is a well-level random effect which accounts for well-level time invariant unobservables

(e.g., soil type, owner/operator management ability, etc.). Xi,j,t is a matrix of control

variables and γ is the corresponding vector of coefficient estimates. Control variables

include cumulative growing season precipitation, average growing season temperature,

and the experiment’s randomization blocking variables (comparison group indicator vari-

ables andHi−Useown/op). All control variables are time-varying with the exception of the

comparison group indicator variables. εi,t is an idiosyncratic error term. We control

for well-level unobserved characteristics with a random-effects estimator rather than a

fixed-effects estimator because the random-effects estimator is more efficient (Cameron

and Trivedi, 2005; Allison, 2009; Abadie et al., 2022). The fixed-effects estimator would

be preferred when there is potential bias from unobserved, time-invariant factors that

create a correlation between the error term and the treatment variable, but that bias is

not present in our design because the treatment was randomized.

Since treatment was randomized at the well owner/operator level (i.e., clusters of

wells), the estimated standard errors for the coefficients are clustered at the well owner/operator

level (Cameron and Miller, 2015; Imbens and Kolesar, 2016). For estimation, we used Bell

and McCaffrey’s (2002) leave-one-cluster-out jackknife variance estimator, implemented

using the R package clubSandwich with Satterthwaite degrees of freedom (Satterthwaite,

1946; Pustejovsky, 2021). All empirical models were estimated using the R package PLM
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(Croissant and Millo, 2008; R Core Team, 2019).

We extend the model specification outlined in equation 1 to explore conditional aver-

age treatment effects by including a suite of interaction variables. Specifically, to explore

heterogeneity in treatment effects, we look at the moderating effect of two pre-registered

covariates, Hi − Useown/opj,t and Hi − Usewelli,j,t . Hi − Usewelli,j,t is the well-level corollary of

Hi −Useown/opj,t , that is Hi −Usewelli,j,t equals one in experiment year t if the ith well used

more water in the pre-experiment time period than their comparison group’s median wa-

ter use. Terms interacting these covariates with the treatment variable estimate treatment

effects conditional on pre-experiment water use patterns. Given the high degree of corre-

lation between Hi −Useown/opj,t and Hi −Usewelli,j,t , particularly for owners/operators associ-

ated with a single well, we separately estimate the moderating impact of pre-experiment

owner/operator- and well-level water use patterns in two separate model specifications.

Past research in the context of residential water use finds that social comparison inter-

ventions are most effective among high water use households (Ferraro and Price, 2013;

Ferraro and Miranda, 2013; Brent et al., 2020). However, little is known about the preva-

lence of social comparison treatment effect heterogeneity in the context of agricultural

water use, particularly how pre-experiment water use affects responsiveness to treatment

(Chabé-Ferret et al., 2019).

In the absence of non-compliance, Equation 1 generates an unbiased estimate of the

average treatment effect (ATE). Yet, as noted above, we have one-way, non-compliance

in our experiment from returned mailers. We could estimate the treatment effect “as as-

signed” (i.e., the intent to treat effect, ITT) (Gupta, 2011), but we are more interested in

the effect of treatment than the effect of treatment assignment. To estimate the effect of

the social comparisons on those who received the mailer (i.e., the average treatment effect

on the treated, ATT), we employ an instrumental variable (IV) approach (Angrist et al.,

1996). The IV approach addresses treatment non-compliance by using the randomized

treatment assignment as an instrument for treatment receipt, which allows one to esti-
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mate the ATT when non-compliance is only in the treated group.6

5 Experimental Results

Table 2 displays results estimating the treatment effects of the social comparison inter-

vention. Specifically, column (1) presents the ATT of the intervention estimated by the

IV model described in equation 1. Columns (2) and (3) present ATTs conditioning on

owner/operator- and well-level pre-experiment water use patterns, respectively. For vi-

sual simplicity, table 2 only presents estimated coefficients for treatment and moderating

covariates interacted with treatment. See Appendix A for the full suite of control and

blocking variable coefficient estimates. The point estimate for the average treatment ef-

fect suggests that receiving a social comparison mailer reduces subsequent water use by

approximately 4% .7 Applying this estimated change in water use to the median control

group well, which represents counterfactual water use absent the intervention, suggests

that the mailer reduces subsequent water use by approximately 6.5 acre-feet. Aggregating

estimated water use changes across control group wells indicates that the intervention de-

creased aggregate annual groundwater use by more than 27,000 acre-feet. This reduction

in annual aggregate groundwater pumping is roughly equivalent to retiring 160 wells

6The validity of the IV approach for addressing treatment non-compliance rests on 5 assumptions ex-
plained in detail in Angrist et al. (1996). The assumptions are as follows: 1) the Stable Unit Treatment
Value Assumption (SUTVA) posits that ‘each unit has only one potential outcome per treatment value’ (i.e.,
there is no interference between treatment units and there are not multiple versions of treatment), 2) ran-
dom assignment to treatment, 3) the exclusion restrictions (i.e., treatment assignment impacts the outcome
only through treatment receipt), 4) non-zero causal effect of treatment assignment on treatment receipt,
and 5) monotonicity, which in our scenario presupposes that there are no cases where individuals always
receive the opposite of what their treatment assignment indicates e.g., getting a comparison mailer when
in the control group. We argue that both the Colorado and Kansas experiments meet the criteria delineated
by these assumptions. Specifically, the SUTVA holds in our setting as treatment compliance relates to ad-
dress reliability which would likely not affect other individual’s receipt of treatment. Given that treatment
assignment was random (see section 3) and impacts water use only through the receiving the comparison
mailer which is causally linked to treatment group assignment our setting meets assumptions 2) through
4). Finally, both experiments meet the monotonicity assumption as there are no cases where control group
well owners/operators consistently receive a comparison mailer.

7Throughout this section we use methods outlined in Halvorsen et al. (1980) to translate model point
estimates into percentages.
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with median levels of groundwater use for a year (see appendix B for more information).

[Table 2 about here.]

Columns (2) and (3) of table 2 present conditional average treatment effects that

are specific to differing subgroups of wells based on pre-experiment water use (i.e., the

covariates Hi − Usewell and Hi − Useown/op). Because assignment to Hi − Usewell and

Hi −Useown/op was not randomized but instead based on pre-experiment pumping be-

havior these coefficient estimates have a descriptive rather than causal interpretation

(Emsley et al., 2010). Our analysis of conditional average treatment effects finds that

treatment effects attenuate according to patterns of pre-experiment water use with the

largest percentage-wise effects concentrating among wells and well owners/operators

that used the least water in the pre-experiment time period. Specifically, we find that

wells owned/operated by individuals/entities with lower than average pre-experiment

water use (Hi −Useown/op = 0) and wells with lower than average pre-experiment water

use (Hi −Usewell = 0) exhibit a larger reduction in groundwater use of about 6% in re-

sponse to treatment. Conversely, we find that diminished treatment effects among wells

owned/operated by individuals/entities with higher than average pre-experiment water

use (Hi−Useown/op = 0). These wells reduce groundwater use by approximately 1% to 2%

in response to treatment. We find similar attenuated treatment effects among wells with

higher than average pre-experiment water use. Together, these results highlight the im-

portance of pre-experiment resource use patterns, which may be a proxy for resource con-

servation preferences, in determining the net impact of comparison interventions aiming

to alter resource use decisions (Cherry et al., 2017).

Section C of the appendix tests the robustness of our primary results to differing

model specifications and assumptions. In appendix C.1, we estimate equation 1 speci-

fying αi as a fixed effect and find qualitatively similar results to the random effect spec-

ification. In appendix C.2, we separately estimate equation 1 for each state’s experiment

and find qualitatively similar but less precise results. We also test the robustness of our
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results to issues arising from multiple mailers/addresses (see section 3). Appendix C.3

estimates experiment treatment effects with 1) a subset of data that drops well obser-

vations associated well owners/operators that were erroneously placed in treatment or

control groups more than once and 2) by incorporating well owners/operators that were

erroneously placed in both treatment and control groups and addressing this issue using

empirical techniques outlined in Angrist et al. (1996). In both cases, we find qualitatively

similar results to those presented in table 2. In appendix C.4, we take a cross-sectional

modeling approach outlined in an early version of the experiment’s pre-analysis plan to

estimate treatment effects. Results are qualitatively similar although less precise than

those generated using a panel data approach. We also test the robustness of our results

to the IV approach leveraged to address treatment non-compliance. Appendix C.5 esti-

mates an ‘intent to treat’ model and finds qualitatively similar results to the IV approach.

Finally, in appendix C.6 we estimate a suite of models estimating temporal heterogeneity

in treatment effects and find no evidence of treatment effect attenuation over time.

5.1 Within-irrigator Spillover Effects

Our primary analysis of the intervention’s effect focuses on wells that either received

comparison information or would have if assigned to the treatment group. Compari-

son information was not provided to all wells owned/operated by individuals/entities

assigned to the treatment group as size constraints in the comparison mailers precluded

providing information for more than three wells (see section 3 for more information).

Here we empirically test for any spillover effects of the intervention. Namely, we test how

a well owner’s/operator’s inclusion in the treatment group affects their pumping behavior

among their non-treated wells (i.e., those wells they own/operate that did not receive any

comparison information). To test for these spillover effects we estimate the previously

described econometric models focusing on treatment group wells that received no com-

parison information and control group wells that would not have received comparison
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information if their owner/operator had been assigned to the treatment group.

[Table 3 about here.]

Table 3 presents results of the models estimating the within-irrigator spillover ef-

fects of the intervention. For simplicity, table 3 focuses only on covariates related to

treatment. A table with the full set of regressions can be found in appendix A. Re-

sults suggest that the comparison intervention generated significant spillovers among

non-treatment wells owned/operated by individuals in the treatment group. Specifically,

wells owned/operated by treatment group individuals/entities that did not receive any

comparison information reduced groundwater pumping by approximately 4.3%, a result

that qualitatively aligns with treatment effects estimated among wells that received com-

parison information.

Columns (2) and (3) of table 3 present results for the specifications estimating the

moderating influence of pre-experiment water use patterns on treatment effects. Re-

sults largely align with the conditional average treatment effects presented in table 2

with treatment generating the largest impact among those wells and owners/operators al-

ready using below average quantities of groundwater. However, within-irrigator spillover

model results are generally less precise than those estimated for wells actually receiving

comparison information.

6 Conclusion

This paper builds on the existing economics literature utilizing randomized control trials

to understand the impacts of social comparison interventions. We present results from a

novel social comparison field experiment implemented among groundwater irrigators in

Colorado and Kansas. The intervention provided an informational mailer to a random-

ized group of agricultural groundwater users comparing their prior groundwater use to
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that of their neighbors. We find that the intervention induced an economically signif-

icant reduction in subsequent groundwater use. Our results demonstrate the efficacy

of ‘nudge’ type interventions to help alleviate the common pool and public good issues

prevalent among many environmental goods and natural resources.

Results of the Colorado and Kansas comparison interventions have important impli-

cations for the management of increasingly scarce groundwater resources. We find that

receiving social comparison information reduces subsequent groundwater use by approx-

imately 4%. Applying the estimated effect of the comparison mailer to counterfactual wa-

ter use in the absence of treatment represented by control group water use suggests that

the intervention reduced aggregate annual groundwater use by more than 27,000 acre-

feet, which is roughly equivalent to retiring 160 wells for a year. The aggregate change in

groundwater use induced by the comparison intervention reduces annual groundwater

depletion by 1.65% and 1.03% in Colorado and Kansas, respectively (see appendix B for

more information). These results demonstrate the efficacy of comparison based behav-

ioral nudges in helping to alleviate groundwater depletion issues common in many of the

most agriculturally productive aquifers (Scanlon et al., 2012; Bierkens and Wada, 2019).

To place our results within the context of other policy efforts aiming to address ground-

water depletion concerns (e.g., well and irrigated land retirement programs), we calculate

the per acre-foot conserved cost of the intervention. This analysis indicates per acre-foot

conserved costs of the intervention of $0.10 and $0.09 for Colorado and Kansas, respec-

tively (see Appendix D for more information). The estimated per acre-foot conserved

cost of the comparison intervention is approximately 1/200th the annual per acre-foot

conserved cost of a well retirement program implemented in the study area (Tsvetanov

and Earnhart, 2020). This result suggests that compared to other policy interventions,

behavioral nudges may constitute a relatively cost effective means to conserve certain

environmental goods and natural resources.

We also find that intervention treatment effects persist among treatment group wells
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that did not receive comparison information. The within-irrigator spillovers arising from

the comparison field experiment demonstrate how interventions can alter behavior even

among non-treated units belonging to treatment group individuals or firms. This insight

contributes to an emerging literature on within treatment group spillovers generated by

behavioral interventions (e.g., Carpenter and Lawler (2019) and Jessoe et al. (2021b)) and

can inform future behavioral interventions where data availability or other limitations

preclude fully treating all relevant units associated with treatment group entities.

This behavioral intervention and its results constitute an important contribution to

the social comparison literature. Specifically, we provide novel evidence regarding the

efficacy of comparison interventions implemented among firms rather than consumers.

The majority of the literature focuses on altering consumer behavior through the provi-

sion of comparison information (Allcott, 2011; Ferraro and Price, 2013; Bernedo et al.,

2014; Brent et al., 2015). Notable exceptions include Earnhart and Ferraro (2020), Wal-

lander et al. (2017), and Chabé-Ferret et al. (2019), who test the efficacy of social compar-

ison interventions on water treatment firm behavior in Kansas, U.S. agricultural produc-

ers’ decisions to enroll in conservation programs, and surface water use among irrigated

farmers in France, respectively. Our work most directly builds on Chabé-Ferret et al.

(2019) who report results from a relatively under-powered experiment and find no sta-

tistically discernible effects of comparison messaging on agricultural water use leaving

important questions unanswered regarding the efficacy of social comparisons in altering

agricultural firms water use behavior. This paper addresses these questions using a suf-

ficiently powered field experiment whose results demonstrate the efficacy of comparison

interventions in altering the water use behavior of profit-seeking agricultural firms.

Our results also have important implications for the management of other environ-

mental goods and natural resources. Experimental results demonstrate that social com-

parison messaging can influence the behavior of agricultural producers toward pro-social

outcomes. This result is significant given the substantial role that agricultural producer
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decision-making has in determining the status of many natural resource stocks and the

environment. Social comparison interventions could potentially be used to encourage

the adoption of conservation practices (e.g., cover cropping, no-till, etc.) or discourage

practices that generate negative environmental externalities (e.g., excessive fertilizer ap-

plication). Future experimental research is needed investigating the efficacy of social

comparison interventions in these diverse settings.

Finally, important questions remain regarding the persistence of treatment effects

over time and whether agricultural producers habituate to repeated treatment. In the

context of residential energy and water demand, past research has found treatment effects

persist over time and consumers are slow to habituate to continued interventions (Fer-

raro et al., 2011; Allcott and Rogers, 2014). Our results from three years of interventions

suggest that the treatment effects do not substantially attenuate amongst groundwater

irrigators, but more research is needed to understand long-run responses. If treatment

effects persist with repeated interventions, then sustained social comparison interven-

tions may offer a cost-effective means to diminish groundwater overdraft and promote

pro-social behavior. If not, then there may be opportunities to intermittently implement

interventions through time to address groundwater depletion.
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Montginoul, M., Rinaudo, J.-D., Brozović, N., and Donoso, G. (2016). Controlling
groundwater exploitation through economic instruments: Current practices, chal-
lenges and innovative approaches. In Integrated groundwater management, pages 551–
581. Springer, Cham.

Nieswiadomy, M. (1985). The demand for irrigation water in the high plains of texas,
1957–80. American Journal of Agricultural Economics, 67(3):619–626.

Palm-Forster, L. H., Ferraro, P. J., Janusch, N., Vossler, C. A., and Messer, K. D.
(2019). Behavioral and experimental agri-environmental research: Methodological
challenges, literature gaps, and recommendations. Environmental and Resource Eco-
nomics, 73(3):719–742.

Perez-Quesada, G. and Hendricks, N. P. (2021). Lessons from local governance and col-
lective action efforts to manage irrigation withdrawals in kansas. Agricultural Water
Management, 247:106736.

Pfeiffer, L. and Lin, C.-Y. C. (2014). Does efficient irrigation technology lead to reduced
groundwater extraction? empirical evidence. Journal of Environmental Economics and
Management, 67(2):189–208.

PRISM (2021). Prism climate group, oregon state university.
http://prism.oregonstate.edu. created 1 Aug 2021.

Pustejovsky, J. (2021). clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with
Small-Sample Corrections. R package version 0.5.3.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

Reeves, R. (2012). Guideline, education, and peer comparison to reduce prescriptions of
benzodiazepines and low-dose quetiapine in prison. Journal of Correctional Health Care,
18(1):45–52.

29



Riseng, C., Wiley, M., Black, R. W., and Munn, M. (2011). Impacts of agricultural land
use on biological integrity: a causal analysis. Ecological Applications, 21(8):3128–3146.

Roe, B. E. and Just, D. R. (2009). Internal and external validity in economics research:
Tradeoffs between experiments, field experiments, natural experiments, and field data.
American Journal of Agricultural Economics, 91(5):1266–1271.

Rosenberg, A. B. (2020). Targeting of water rights retirement programs: Evidence from
kansas. American Journal of Agricultural Economics, 102(5):1425–1447.

Sacarny, A., Yokum, D., Finkelstein, A., and Agrawal, S. (2016). Medicare letters to curb
overprescribing of controlled substances had no detectable effect on providers. Health
Affairs, 35(3):471–479.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance compo-
nents. Biometrics bulletin, 2(6):110–114.

Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L.,
and McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in
the US high plains and central valley. Proceedings of the National Academy of Sciences,
109(24):9320–9325.

Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V. (2007).
The constructive, destructive, and reconstructive power of social norms. Psychological
Science, 18(5):429–434.

Shang, J. and Croson, R. (2009). A field experiment in charitable contribution: The impact
of social information on the voluntary provision of public goods. The economic journal,
119(540):1422–1439.

Slough, T., Rubenson, D., Levy, R., Alpizar Rodriguez, F., Bernedo del Carpio, M., Bun-
taine, M. T., Christensen, D., Cooperman, A., Eisenbarth, S., Ferraro, P. J., et al. (2021).
Adoption of community monitoring improves common pool resource management
across contexts. Proceedings of the National Academy of Sciences, 118(29):e2015367118.

Smith, S. M., Andersson, K., Cody, K. C., Cox, M., and Ficklin, D. (2017). Responding
to a groundwater crisis: The effects of self-imposed economic incentives. Journal of the
Association of Environmental and Resource Economists, 4(4):985–1023.

Steward, D. R. and Allen, A. J. (2016). Peak groundwater depletion in the high plains
aquifer, projections from 1930 to 2110. Agricultural Water Management, 170:36–48.

Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M., and Apley, M. D.
(2013). Tapping unsustainable groundwater stores for agricultural production in the
high plains aquifer of kansas, projections to 2110. Proceedings of the National Academy
of Sciences, 110(37):E3477–E3486.
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Figures

Figure 1: Colorado and Kansas study areas
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Figure 2: Irrigation wells per well owner
Note: For visual simplicity figure 2 does not display data for well owners/operators that have more than 10 wells as such concen-
trations of well ownership and operation are relatively rare. Approximately, 2% and 6% of well owners/operators in Colorado and
Kansas, respectively, own or operate more than 11 irrigation wells.
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Colorado mailer

Kansas mailer

Figure 3: Example social comparison mailers
Note: The above example mailers are based on actual comparison interventions sent to a Colorado and and Kansas treatment group
well owner/operator in 2021. We have anonymized both mailers by replacing water diversion identification numbers (WDID), water
rights numbers (WRN), permit numbers, and section-township-range indicators with fabricated entries.
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Tables

Table 1: Average Annual Groundwater Use and Weather Summary Statistics, 2011-
2021

Annual summary statistic N Mean St. Dev.

Groundwater Use (acre feet) 66,292 189.09 126.78
Irrigated Acreage (acres) 59,857 162.43 112.80
Water User per Acre (acre inches per acre) 59,857 13.92 6.08
Temperature (◦ Fahrenheit) 66,292 75.65 2.53
Precipitation (inches) 66,292 9.22 3.65

The number of groundwater use observations is greater than irrigated acreage and water use per acre
observations as acreage data are not available for Colorado between 2011 and 2014.
Temperature is the mean daily temperature across the growing season (June, July, and August).
Precipitation is the cumulative total of growing season (June, July, and August) rainfall.
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Table 2: Average Treatment Effect IV Model

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0414∗∗∗ -0.0604∗∗∗ -0.0576∗∗∗

(-0.0605,-0.0223) (-0.0865,-0.0344) (-0.0858,-0.0294)
Treatment X Hi −Useown/op 0.0509∗∗

(0.0166,0.0852)
Treatment X Hi −Usewell 0.0400∗

(0.0056,0.0744)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 66,292 66,292 66,292
R2 0.4509 0.4510 0.4527
F Statistic 684,255.8000∗∗∗ 684,567.6000∗∗∗ 693,794.0000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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Table 3: Average Treatment Effect IV Within-irrigator Spillover Model

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0445∗∗ -0.0575∗∗ -0.0623∗∗

(-0.0745,-0.0144) (-0.1011,-0.0139) (-0.1018,-0.0227)
Treatment X Hi −Useown/op 0.0318

(-0.0249,0.0886)
Treatment X Hi −Usewell 0.0422

(-0.0128,0.0973)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 39,783 39,783 39,783
R2 0.3767 0.3768 0.3773
F Statistic 385,887.1000∗∗∗ 386,176.3000∗∗∗ 387,894.8000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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Appendices
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A Full Empirical Modeling Results

For visual simplicity, the main text of this paper does not present results for the full

set of covariates used to estimated equation 1. Here we present and discuss the full set

of empirical results for the interested reader. Specifically, tables A.1 and A.2 displays

full model results for the suite of specifications presented in tables 2 and 3 of the main

text, respectively. Note that while the full models include comparison group indicator

variables, tables A.1 and A.2 do not present these coefficient estimates as there are more

than 30 individual comparison groups.

The estimated sign of the impact of the experiment blocking variable Hi −Useown/op

on water use is mixed across model specifications and relatively imprecise. Addition-

ally, the coefficient estimate associated with Hi −Usewell suggests that wells with high

pre-experiment water use reduced their water use in subsequent years (see column (3)

of tables A.1 and A.2). However, this coefficient is only precisely estimated for the

model analyzing treatment effects among treated wells. Finally, the impacts of tem-

perature and precipitation on annual groundwater pumping follow intuition. There is

a positive and significant relationship between temperature and groundwater demand

as higher temperatures increase evapotranspiration and crop water requirements (Harg-

reaves and Samani, 1985; Hrozencik et al., 2021). Higher rates of growing season precip-

itation decrease water demand since precipitation and groundwater applied as irrigation

are roughly substitutes.
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Table A.1: Average Treatment Effect IV Model, Full Results

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0414∗∗∗ -0.0604∗∗∗ -0.0576∗∗∗

(-0.0605,-0.0223) (-0.0865,-0.0344) (-0.0858,-0.0294)
Hi −Useown/op -0.0033 -0.0204∗ 0.0040

(-0.0179,0.0113) (-0.0367,-0.0042) (-0.0153,0.0232)
Treatment X Hi −Useown/op 0.0509∗∗

(0.0166,0.0852)
Hi −Usewell -0.0197

(-0.0394,0.00001)
Treatment X Hi −Usewell 0.0400∗

(0.0056,0.0744)
Temperature 0.0686∗∗∗ 0.0685∗∗∗ 0.0685∗∗∗

(0.0653,0.0719) (0.0651,0.0718) (0.0652,0.0718)
Precipitation -0.0227∗∗∗ -0.0229∗∗∗ -0.0229∗∗∗

(-0.0242,-0.0213) (-0.0243,-0.0214) (-0.0243,-0.0214)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 66,292 66,292 66,292
R2 0.4509 0.4510 0.4527
F Statistic 684,255.8000∗∗∗ 684,567.6000∗∗∗ 693,794.0000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.

40



Table A.2: Average Treatment Effect IV Within-irrigator Spillover Model, Full Results

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0445∗∗ -0.0575∗∗ -0.0623∗∗

(-0.0745,-0.0144) (-0.1011,-0.0139) (-0.1018,-0.0227)
Hi −Useown/op 0.0040 -0.0058 0.0061

(-0.0184,0.0265) (-0.0295,0.0178) (-0.0215,0.0338)
Treatment X Hi −Useown/op 0.0318

(-0.0249,0.0886)
Hi −Usewell -0.0111

(-0.0484,0.0263)
Treatment X Hi −Usewell 0.0422

(-0.0128,0.0973)
Temperature 0.0871∗∗∗ 0.0870∗∗∗ 0.0871∗∗∗

(0.0790,0.0953) (0.0789,0.0952) (0.0788,0.0954)
Precipitation -0.0162∗∗∗ -0.0163∗∗∗ -0.0163∗∗∗

(-0.0195,-0.0130) (-0.0196,-0.0131) (-0.0196,-0.0130)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 39,783 39,783 39,783
R2 0.3767 0.3768 0.3773
F Statistic 385,887.1000∗∗∗ 386,176.3000∗∗∗ 387,894.8000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.

41



B Intervention Effects on Annual Groundwater Use and

Depletion

The well documented depletion of the High Plains aquifer constitutes a significant threat

to the resilience of the agricultural communities that rely on the aquifer’s resources and

the broader U.S. agricultural economy (Scanlon et al., 2012; Steward et al., 2013; Haacker

et al., 2015; Suárez et al., 2018). To understand how our social comparison field experi-

ment affects broader issues related to groundwater sustainability, we estimate the aggre-

gate impact of the intervention on groundwater use and compare this to estimated High

Plains aquifer depletion rates in the literature. This analysis demonstrates the extent to

which behavioral nudges can be leveraged to address groundwater depletion issues.

We calculate the reduction in aggregate groundwater use induced by the interven-

tion by applying the estimated average treatment effect (see column (1) of table 2 of the

main text) to control group well-level average water use during experiment time period.

We use the control group as the benchmark for calculating the water use impacts of the

intervention as these wells provide the best estimate of counterfactual water use absent

the comparison intervention. We aggregate these estimated counterfactual changes in in

well-level water use in response to the intervention across all control group wells which

yields a predicted aggregate annual reduction of 27,229 acre-feet. Colorado and Kansas

treatment wells reduced water use by 8,720 and 18,509 acre-feet per year, respectively

(8,720 + 18,509 = 27,229). To calculate the well retirement equivalent of the water conser-

vation induced by the intervention we find the median of the previously calculated well-

level average water use during the pre-experiment time period (2011-2018). The median

well used 167.4 acre-feet per year, retiring approximately 160 of these median wells re-

sults yields an equivalent level of annual groundwater use reduction as that achieved by

the intervention in a given year. Note that these predicted aggregate changes in water use

represent the impact of the social comparison intervention, they do not correspond to the

scenario where all Kansas and Colorado wells receive comparison information.

The previous estimates of water conservation only take into account wells that re-

ceived comparison information. However, as detailed in section 5.1 of the main text, the

intervention also altered pumping behavior among wells owned/operated by treatment

group individuals/entities that did not receive comparison information. If we include the

change in groundwater use estimated for these wells, then the aggregate reduction in an-

nual groundwater use increases to 37,943 acre-feet which is equivalent to the retirement

of approximately 225 median wells. Including these control group wells which would

not receive comparison information even if their owner/operator were assigned to the
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treatment group increases state-level reductions in annual groundwater use in Colorado

and Kansas to 10,929 and 27,014 acre-feet, respectively.

We leverage estimates from the literature regarding annual rates of depletion for the

High Plains aquifer and compare these volumes to the reductions in groundwater use

induced by the intervention. Specifically, we use state-level estimates from Steward and

Allen (2016) of annual groundwater depletion rates as of 2020 (see figure 7 in Steward

and Allen (2016)) and compare to estimates of intervention induced state level reduc-

tions in annual groundwater use. Steward and Allen (2016) estimate Colorado’s and

Kansas’s annual rate of groundwater depletion as of 2020 to be 526,964 and 1,783,570

acre-feet, respectively. Comparing these annual rates of depletion to estimated state-

level reductions in groundwater use induced by the intervention reveals that the social

comparison reduced annual depletion rates by 1.65% in Colorado and 1.03% in Kansas

(8,720/526,964 = 0.0165 & 18,509/1,783,570= 0.0103). When including the interven-

tions’ spillover effects on treatment group wells that did not receive comparison infor-

mation, the reductions in annual depletion increase to 2.07% and 1.51% in Colorado and

Kansas, respectively (10,929/526,964 = 0.0207 & 27,014/1,783,570 = 0.0151).

Finally, policymakers may be more interested in the water use impacts of comparison

interventions targeting all resource users rather than a subset of users. To that end, we

calculate the change in aggregate water use for the scenario where all Kansas and Col-

orado wells receive comparison information. To do this, we leverage average well-level

pre-experiment water use for both treatment and control group wells to establish coun-

terfactual water use in the absence of treatment and apply the estimated treatment effect

to predict well-level changes in water use in response to the intervention. We then ag-

gregate these well-level changes in water use across all wells (both treatment and control

groups) to generate total changes in water use. This process predicts that if all Kansas and

Colorado well owners received comparison information for all their wells, then total wa-

ter use would decrease by 19,981 and 58,792 acre-feet per year in Colorado and Kansas,

respectively (total = 78,774 acre-feet). These predicted aggregate changes in groundwa-

ter use would result in a reduction of annual groundwater depletion of 3.7% and 3.2%

in Colorado and Kansas, respectively (19,981/526,964 = 0.0379 & 58,792/1,783,570 =

0.0329).
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C Empirical Modeling Robustness Checks

This section further tests the robustness of the experimental results presented in section 5

of the main text. Specifically, this section does the following: 1) estimates a model which

treats the well-level effects as fixed effects rather than random effects, 2) separately esti-

mates average treatment effects for the Colorado and Kansas experiments to understand

how pooling data from both experiments in our analysis of treatment effects impacts re-

sults, 3) estimates two models which test the impact of over-treatment, over-control, and

treatment-control group contamination on our primary results, 4) estimates treatment ef-

fects using a cross-sectional rather than panel model approach, 5) estimates an intent to

treat model to test the robustness of our results to the IV approach we leverage to address

treatment non-compliance, and 6) estimates a model to assess heterogeneity in treatment

effects across time.

C.1 Well-Level Fixed Effects

The primary model used to evaluate the impact of the social comparison intervention

leverages a well-level random effect specification. Here we test the robustness of our

results to this modeling approach by estimating a similar econometric model to that pre-

sented in equation 1 of the main text with a well-level fixed effect. Table C.1 presents

the results of this fixed effect specification and exhibits qualitatively similar results to

those generated using a well-level random effect. Specifically, the fixed effect specifi-

cation indicates a negative and statistically significant average treatment effect with a

slightly smaller magnitude (approximately 3%) than that estimated with the random ef-

fect specification. We also find qualitatively similar results regarding the moderating

impact of pre-experiment water use on treatment effects. Overall, results of the fixed ef-

fect specification demonstrates that the estimated efficacy of the intervention in reducing

subsequent water use persists under differing modeling assumptions related to well-level

effects.
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Table C.1: Average Treatment Effect IV Model, Fixed Effect Specification

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0295∗∗ -0.0440∗∗ -0.0360∗

(-0.0490,-0.0101) (-0.0705,-0.0174) (-0.0646,-0.0074)
Hi −Useown/op -0.0218∗∗ -0.0348∗∗∗ -0.0130

(-0.0366,-0.0070) (-0.0512,-0.0184) (-0.0324,0.0064)
Treatment X Hi −Useown/op 0.0387∗

(0.0039,0.0735)
Hi −Usewell -0.0193

(-0.0391,0.0005)
Treatment X Hi −Usewell 0.0216

(-0.0130,0.0562)
Temperature 0.0693∗∗∗ 0.0692∗∗∗ 0.0692∗∗∗

(0.0659,0.0726) (0.0658,0.0725) (0.0658,0.0725)
Precipitation -0.0228∗∗∗ -0.0229∗∗∗ -0.0229∗∗∗

(-0.0242,-0.0213) (-0.0243,-0.0215) (-0.0243,-0.0214)

Blocking Variables Yes Yes Yes
Well Fixed Effect Yes Yes Yes
Observations 66,292 66,292 66,292
R2 0.1202 0.1202 0.1202
F Statistic 7,881.7040∗∗∗ 7,889.6650∗∗∗ 7,886.2610∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.

C.2 Separately Modeling Impacts of Colorado and Kansas Interven-

tions

The primary analysis of the comparison intervention’s effect on groundwater use (see ta-

ble 2 in the main text) jointly estimates treatment effects for both the Colorado and Kansas

experiments in one unified modeling framework. However, the Colorado and Kansas ex-

periments were conducted independently of each other and differed somewhat in their

design and implementation (see section 3 for more information). To test the robustness

of our results to the modeling approach utilized in the main text, we separately estimate

average treatments effects for both the Colorado and Kansas experiments. Tables C.2

and C.3 present these results for Colorado and Kansas, respectively.

Results of the Colorado experiment qualitatively align with those presented in the
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main text but are relatively less precisely estimated (see table C.2) . Specifically, results

of the Colorado experiment indicate that treatment induces a reduction in subsequent

groundwater pumping but this relationship is only statistically significant in the condi-

tional treatment effect specification which includes an interaction between treatment and

the well-level pre-experiment water use indicator variable. The relative lack of precision

of the treatment effect estimates generated using the Colorado experiment may be related

to the diminished statistical power associated with the smaller sample size.

Results of the Kansas experiment also qualitatively align with the pooled results pre-

sented in the main text and have a similar level of precision. The Kansas-specific average

treatment effect presented in table C.3 is slightly larger in magnitude than that presented

in the main text suggesting that treatment effects may be larger in Kansas, potentially

due to differences in the experiment’s design in Kansas (e.g., providing comparison infor-

mation in acre inches per acre irrigated rather than total acre-feet). Similar to the results

presented in the main text, estimated conditional treatment effects for the Kansas experi-

ment show that treatment effects attenuate but remain negative based on pre-experiment

water use patterns.
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Table C.2: Average Treatment Effect IV Model, Colorado Intervention

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0371 -0.0504 -0.0808∗∗

(-0.0743,0.0001) (-0.1041,0.0033) (-0.1361,-0.0255)
Hi −Useown/op 0.0169 0.0061 -0.0119

(-0.0079,0.0418) (-0.0195,0.0316) (-0.0445,0.0206)
Treatment X Hi −Useown/op 0.0333

(-0.0296,0.0961)
Hi −Usewell 0.0320

(-0.0027,0.0667)
Treatment X Hi −Usewell 0.0657∗

(0.0054,0.1259)
Temperature 0.0721∗∗∗ 0.0722∗∗∗ 0.0721∗∗∗

(0.0655,0.0788) (0.0656,0.0788) (0.0654,0.0788)
Precipitation -0.0225∗∗∗ -0.0225∗∗∗ -0.0225∗∗∗

(-0.0251,-0.0199) (-0.0251,-0.0199) (-0.0251,-0.0198)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 17,552 17,552 17,552
R2 0.3937 0.3936 0.4038
F Statistic 337,443.9000∗∗∗ 337,178.7000∗∗∗ 402,155.0000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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Table C.3: Average Treatment Effect IV Model, Kansas Intervention

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0478∗∗∗ -0.0719∗∗∗ -0.0602∗∗∗

(-0.0697,-0.0259) (-0.1007,-0.0430) (-0.0922,-0.0283)
Hi −Useown/op -0.0060 -0.0287∗∗ 0.0044

(-0.0242,0.0122) (-0.0496,-0.0079) (-0.0183,0.0271)
Treatment X Hi −Useown/op 0.0661∗∗

(0.0258,0.1065)
Hi −Usewell -0.0271∗

(-0.0502,-0.0039)
Treatment X Hi −Usewell 0.0380

(-0.0038,0.0799)
Temperature 0.0675∗∗∗ 0.0673∗∗∗ 0.0673∗∗∗

(0.0638,0.0713) (0.0636,0.0711) (0.0636,0.0711)
Precipitation -0.0228∗∗∗ -0.0231∗∗∗ -0.0230∗∗∗

(-0.0245,-0.0212) (-0.0247,-0.0214) (-0.0247,-0.0214)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 48,740 48,740 48,740
R2 0.4623 0.4625 0.4627
F Statistic 439,845.8000∗∗∗ 440,317.5000∗∗∗ 441,013.7000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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C.3 Duplicated Addresses and Multiple Mailers

Section 3 of the main text describes several of the experimental design challenges encoun-

tered during the implementation of the social comparison intervention. Here we test the

robustness of our results to the challenges associated with variations in abbreviation rules

in the address data used to identify experiment units (i.e., well owners/operators with a

common address). These address issues resulted in some well owners/operators showing

up multiple times in either the treatment or control groups. To assess the extent to which

over-treatment (an individual well owner/operator receiving multiple mailers) or over-

control (an individual well owner/operator being in the control group multiple times),

we estimate average treatment effects using a sample of data which drops these entities.

Results of this model are presented in table C.4 whose estimated average treatment effects

are similar in magnitude as those presented in the main text. These results suggest that

our estimated treatment effects remain robust to over-control and over-treatment issues.

In some cases, address issues resulted in well owners/operators being classified in

both the treatment and control group. The model estimating average treatment effects in

the main text drops well observations associated with these treatment-control group well

owners/operators. Here we test the extent to which dropping these observations affects

the estimated treatment effects of the intervention. To do so, we estimate a model which

includes these treatment/control group observations and address discrepancies between

control group designation and treatment receipt using IV non-compliance methods out-

lined in Angrist et al. (1996). While the treatment-control issue does not perfectly align

with Angrist et al.’s (1996) non-compliance framework, results of this model provide

some intuition regarding the impact of treatment-control group duplication on our re-

sults. Table C.5 presents results of this model which are similar in magnitude to those

presented in the main text providing evidence that treatment-control group issues do not

significantly impact our primary results.
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Table C.4: Average Treatment Effect IV Model, Dropping Over-control and Over-
treatment Observations

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0398∗∗∗ -0.0603∗∗∗ -0.0588∗∗∗

(-0.0598,-0.0198) (-0.0876,-0.0330) (-0.0882,-0.0294)
Hi −Useown/op -0.0030 -0.0219∗ 0.0049

(-0.0185,0.0124) (-0.0390,-0.0047) (-0.0153,0.0250)
Treatment X Hi −Useown/op 0.0554∗∗

(0.0193,0.0914)
Hi −Usewell -0.0223∗

(-0.0429,-0.0017)
Treatment X Hi −Usewell 0.0468∗

(0.0108,0.0828)
Temperature 0.0681∗∗∗ 0.0680∗∗∗ 0.0680∗∗∗

(0.0647,0.0716) (0.0645,0.0714) (0.0646,0.0714)
Precipitation -0.0230∗∗∗ -0.0231∗∗∗ -0.0231∗∗∗

(-0.0245,-0.0215) (-0.0246,-0.0216) (-0.0246,-0.0216)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 62,352 62,352 62,352
R2 0.4419 0.4420 0.4438
F Statistic 625,504.4000∗∗∗ 625,726.3000∗∗∗ 634,180.6000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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Table C.5: Average Treatment Effect IV Model, Including Treatment-control Observa-
tions

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0466∗∗∗ -0.0692∗∗∗ -0.0631∗∗∗

(-0.0692,-0.0241) (-0.1008,-0.0375) (-0.0974,-0.0288)
Hi −Useown/op -0.0025 -0.0220∗∗ 0.0047

(-0.0169,0.0118) (-0.0373,-0.0068) (-0.0139,0.0234)
Treatment X Hi −Useown/op 0.0557∗∗

(0.0210,0.0903)
Hi −Usewell -0.0224∗

(-0.0413,-0.0035)
Treatment X Hi −Usewell 0.0405∗

(0.0054,0.0755)
Temperature 0.0687∗∗∗ 0.0685∗∗∗ 0.0686∗∗∗

(0.0655,0.0718) (0.0653,0.0717) (0.0654,0.0718)
Precipitation -0.0226∗∗∗ -0.0228∗∗∗ -0.0228∗∗∗

(-0.0240,-0.0212) (-0.0242,-0.0214) (-0.0242,-0.0214)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 73,158 73,158 73,158
R2 0.4603 0.4542 0.4516
F Statistic 755,582.2000∗∗∗ 723,752.0000∗∗∗ 710,449.3000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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C.4 Cross-Sectional Econometric Modeling Results

The primary econometric model used to analyze the impact of the comparison treatment

on subsequent water use leverages a panel data approach to estimate average treatment

effects. This section of the appendix presents empirical results generated using a cross-

sectional approach to estimate average treatment effects. These cross-section models use

an econometric model similar to that described by equation 1 in the main text that ex-

cludes the well-level random effect and separately estimates state-year models i.e., sepa-

rate models are estimated for Colorado’s 2019, 2020, and 2021 experiments and Kansas’s

2020 and 2021 experiments. These results aim to check the robustness of our results

to differing modeling specifications and align with early iterations of the experiment’s

pre-analysis plan which outlined cross-sectional models to estimate the impact of the

intervention.

Tables C.6 and C.7 present these cross-sectional modeling results for the Colorado and

Kansas experiments, respectively. Similar to the panel model results in the main text,

results presented in tables C.6 and C.7 use an instrumental variables approach to ad-

dress treatment non-compliance (Angrist et al., 1996). Each column of tables C.6 and C.7

present results from differing experiment years within a given state. For simplicity, we

do not estimate conditional treatment effects using the cross-section approach. Colorado

and Kansas cross-sectional results find similar magnitude treatment effects to those pre-

sented in the main text using a panel data approach. However, treatment effects are only

statistically significant for the Kansas experiment. The lack of statistically significant

treatment effects for the Colorado experiment may be related to a relative lack of statisti-

cal power to detect effects when relying on the relatively smaller sample of wells involved

in a single iteration of the Colorado experiment. Estimated coefficients related to other

model covariates also generally align with panel data results (see tables A.1 and A.2). An

exception is the estimated impact of temperature on groundwater use in Kansas where

cross-section results suggest a negative, although statistically insignificant, relationship.

The lack of precision for these estimated temperature coefficients may be related to rel-

atively little within year variation between wells in average growing season temperature

in Kansas.
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Table C.6: Average Treatment Effect IV Cross-sectional Model, Colorado

Dependent variable:

Log(Annual Groundwater Use)
(2019) (2020) (2021)

Treatment -0.0372 -0.0249 -0.0184
(-0.1097,0.0352) (-0.0997,0.0498) (-0.0892,0.0525)

Hi −Useown/op 0.4204∗∗∗ 0.3830∗∗∗ 0.4120∗∗∗

(0.3550,0.4858) (0.3194,0.4467) (0.3498,0.4743)
Temperature 0.1181∗ 0.0242 0.0810

(0.0024,0.2337) (-0.0987,0.1472) (-0.0003,0.1622)
Precipitation -0.0396∗∗ -0.0042 -0.0071

(-0.0617,-0.0176) (-0.0365,0.0281) (-0.0262,0.0120)

Comparison group Yes Yes Yes
indicator variables
Observations 1,614 1,614 1,614
R2 0.2369 0.1812 0.2362

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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Table C.7: Average Treatment Effect IV Cross-sectional Model, Kansas

Dependent variable:

Log(Annual Groundwater Use)
(2019) (2020)

Treatment -0.0598∗ -0.0621∗

(-0.1068,-0.0128) (-0.1135,-0.0107)
Hi −Useown/op 0.2624∗∗∗ 0.2675∗∗∗

(0.2153,0.3096) (0.2176,0.3173)
Temperature -0.2697∗∗∗ -0.1734∗∗∗

(-0.3519,-0.1875) (-0.2556,-0.0912)
Precipitation -0.0493∗∗∗ -0.0232∗

(-0.0693,-0.0293) (-0.0433,-0.0030)

Comparison group Yes Yes
indicator variables
Observations 4,605 4,605
R2 0.3470 0.3292

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.
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C.5 Intent to Treat Models

The econometric modeling presented in the main text of the paper addresses treatment

non-compliance using an instrumental variable approach first proposed by Angrist et al.

(1996). Here we assess the robustness of our results to this modeling approach by esti-

mating an ‘intent to treat’ model which measures the average causal effect of assignment

to the treatment group rather than treatment receipt (Gupta, 2011). Table C.8 presents

the results for the ‘intent to treat’ model demonstrating that estimated average treat-

ment effects do not vary significantly based on this modeling approach. Specifically,

the ‘intent to treat’ model finds an average treatment effect of nearly 4% which aligns

with the treatment effect estimated with the IV approach. Additionally, we find similar

conditional average treatment effects with the ‘intent to treat’ model i.e. the impact of

treatment is largest among wells and and well owners/operators with lower than aver-

age pre-experiment water use while treatment effects attenuate for wells and well own-

ers/operators with higher than average pre-experiment water use.
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Table C.8: Average Treatment Effect Intent to Treat Model

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0383∗∗∗ -0.0558∗∗∗ -0.0532∗∗∗

(-0.0551,-0.0215) (-0.0783,-0.0334) (-0.0763,-0.0301)
Hi −Useown/op -0.0033 -0.0204∗ 0.0039

(-0.0177,0.0111) (-0.0366,-0.0041) (-0.0152,0.0230)
Treatment X Hi −Useown/op 0.0507∗∗

(0.0178,0.0836)
Hi −Usewell -0.0196∗

(-0.0392,-0.000002)
Treatment X Hi −Usewell 0.0399∗

(0.0086,0.0712)
Temperature 0.0686∗∗∗ 0.0685∗∗∗ 0.0685∗∗∗

(0.0653,0.0719) (0.0652,0.0718) (0.0652,0.0718)
Precipitation -0.0227∗∗∗ -0.0229∗∗∗ -0.0228∗∗∗

(-0.0241,-0.0213) (-0.0243,-0.0214) (-0.0243,-0.0214)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 66,292 66,292 66,292
R2 0.4510 0.4513 0.4532
F Statistic 684,815.4000∗∗∗ 685,765.0000∗∗∗ 695,472.1000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.

C.6 Persistence of Treatment Effects Across Time

The long-term conservation benefits of behavioral nudges like that presented in the main

text depend crucially on the persistence of treatment effects over time. If individuals

habituate to information provided by nudges over time, then the estimated benefits of

the intervention will similarly attenuate over time. In this section of the appendix, we ex-

plore the persistence of treatment effects over time in the context of the social comparison

intervention presented in the main text. To empirically model temporally heterogeneous

treatment effects we introduce two dummy variables, ‘First Treatment’ and ‘Last Treat-

ment,’ which indicate the first or last year of treatment for a given well owned/operated

by a treatment group individual/entity. We include these dummy variables and terms

interacting them with the treatment variable in two separate models similar to that out-
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lined by equation 1 of the main text. Results of these models are presented in columns (2)

and (3) of table C.9. For ease of comparison, column (1) of table C.9 displays the primary

average treatment effect results from the main text.

Table C.9: Average Treatment Effect IV Model, Temporally Heterogeneous Effects

Dependent variable:

Log(Annual Groundwater Use)
(1) (2) (3)

Treatment -0.0414∗∗∗ -0.0599∗∗∗ -0.0297∗∗

(-0.0605,-0.0223) (-0.0826,-0.0372) (-0.0519,-0.0075)
Hi −Useown/op -0.0033 -0.0041 0.0160∗

(-0.0179,0.0113) (-0.0198,0.0117) (0.0003,0.0318)
First Treatment 0.0014

(-0.0151,0.0180)
Treatment X First Treatment 0.0366∗∗

(0.0109,0.0622)
Last Treatment -0.0720∗∗∗

(-0.0903,-0.0537)
Treatment X Last Treatment 0.0180

(-0.0089,0.0449)
Temperature 0.0686∗∗∗ 0.0683∗∗∗ 0.0660∗∗∗

(0.0653,0.0719) (0.0650,0.0717) (0.0627,0.0694)
Precipitation -0.0227∗∗∗ -0.0231∗∗∗ -0.0246∗∗∗

(-0.0242,-0.0213) (-0.0245,-0.0216) (-0.0261,-0.0231)

Blocking Variables Yes Yes Yes
Well Random Effect Yes Yes Yes
Observations 66,292 66,292 66,292
R2 0.4509 0.4513 0.4521
F Statistic 684,255.8000∗∗∗ 686,213.1000∗∗∗ 687,606.2000∗∗∗

Note: * p<0.05; ** p<0.01; *** p<0.001
Standard errors clustered at the well-owner/operator level.
95 percent confidence intervals in parentheses below
coefficient estimates.

Column (2) of table C.9 presents empirical results evaluating if treatment effects in the

first year of the interventions differs from subsequent years. The estimated coefficient for

the ‘Treatment’ variable in column (2) suggests an approximate reduction in groundwa-

ter use of 6% after the initial year (‘First Treatment’ = 0). Jointly, the coefficient esti-

mates for ‘Treatment’ and the term interacting ‘Treatment’ with ‘First Treatment’ show

that the initial intervention resulted in approximately a 2.5% reduction in groundwater

use while subsequent treatment effects increase in later years of the experiment. The
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conditional treatment effects presented in column (2) provides some evidence suggesting

that treatment effects do not attenuate over time but instead is amplified. We further

test this hypothesis in column (3) of table C.9 which tests for temporally heterogeneous

treatment effects in the last year of the intervention. The estimated coefficient for the

‘Treatment’ variable in column (3) suggest that the first year of the intervention induced

approximately a 3% reduction in groundwater use. The coefficient estimate for the term

interacting ‘Treatment’ with the ‘Last Treatment’ indicator is positive but not statistically

significant which suggests that treatment effects are not significantly different in the last

year of the intervention. This result provides some evidence that treatment group indi-

viduals/entities do not habituate to comparison information over time, at least within the

relatively short time span (2 or 3 years) evaluated in this experiment.
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D Intervention Costs Per Unit of Water Conserved

In this section of the appendix we develop a simple methodology to calculate the per unit

of water conserved costs of the social comparison intervention. This calculation facilitates

cost-effectiveness comparisons between the intervention and other water conservation

policies implemented in the study areas, namely well retirement programs. Determining

the per unit of water conserved cost of the intervention requires accounting for both the

resources necessary to generate and mail the intervention and the change in water use

behavior attributable to the intervention.

Colorado and Kansas mailers cost approximately $1.80 and $1.20 per mailer, respec-

tively. The Kansas mailers were somewhat less expensive per mailer due to quantity

discounts applied to larger mailing and printing jobs. The total cost per year for the Col-

orado and Kansas interventions were $876 and $1,667, respectively. Table D.1 outlines

the total costs and per mailer costs, differentiating between printing and mailing for the

Colorado and Kansas interventions. Note that the number of mailers sent in both experi-

ments is slightly larger than the treatment group as mailers were also sent to the research

team and some treatment mailers were excluded due to address non-compliance in the

first years of the interventions.

Table D.1: Social Comparison Intervention Mailing and Printing Costs Per Year

Total Number of Cost per
Cost ($) Mailers Mailer ($)

Colorado Printing 556 494 1.12
Mailing 320 494 0.65
Total 876 494 1.77

Kansas Printing 901 1418 0.64
Mailing 766 1418 0.54
Total 1667 1418 1.18

To calculate intervention costs per acre-foot conserved we calculate aggregate annual

groundwater use reductions arising from the intervention and compare this to total an-

nual intervention costs. We calculate the reduction in aggregate groundwater use induced

by the intervention by applying the estimated average treatment effect (see column (1) of

table 2 of the main text) to the control group well-level average water use during the

experiment time period. We use the control group as the benchmark for calculating the

water use impacts of the intervention as these wells provide the best estimate of counter-

factual water use absent the comparison intervention. We aggregate predicted changes in

well-level water use in response to the intervention across all control group wells which
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yields an aggregate annual reduction of 27,229 acre-feet, with Colorado and Kansas wells

reducing water use by 8,720 and 18,509 acre-feet per year, respectively (8,720 + 18,509 =

27,229). Using the total annual intervention costs reported in table D.1 implies average

annual per acre-foot conserved cost of $0.10 and $0.09 in Colorado and Kansas, respec-

tively ($876/8,720 acre-feet = 0.1004 $ per acre-foot & $1,667/18,509 acre-feet = 0.0901

$ per acre-foot).
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