Annu. Rev. Environ. Resourc. 2014.39:495-517. Downloaded from www.annualreviews.org

by Georgia State University on 10/21/14. For persona use only.

ANNUAL
avews Further
Click here for quick links to

Annual Reviews content online,
including:

« Other articles in this volume
«Top cited articles

« Top downloaded articles

+ Our comprehensive search

Annu. Rev. Environ. Resour. 2014. 39:495-517

First published online as a Review in Advance on
September 3, 2014

The Annual Review of Environment and Resources is
online at environ.annualreviews.org

This article’s doi:
10.1146/annurev-environ-101813-013230

Copyright (© 2014 by Annual Reviews.
All rights reserved

Advances in Measuring the
Environmental and Social
Impacts of Environmental
Programs

Paul J. Ferraro' and Merlin M. Hanauer?

Department of Economics, Andrew Young School of Policy Studies, Georgia State University,
Atlanta, Georgia 30302; email: pferraro@gsu.edu

?Department of Economics, Sonoma State University, Rohnert Park, California 94928;
email: hanauer@sonoma.edu

Keywords

causal, bias, impact evaluation, selection, heterogeneity, mechanisms

Abstract

Inspired by the success of evidence-based medicine, environmental scholars
and practitioners have grown enthusiastic about applying a similar evidence-
based approach to solve some of the world’s most pressing environmental
problems. An important component of the evidence-based movement is the
empirical evaluation of program and policy impacts. Impact evaluations draw
heavily from recent advances in the empirical study of causal relationships—
the effect of one thing on another. This review highlights the key compo-
nents of these advances and characterizes the way in which they contribute to
better evaluations of the environmental and social impacts of environmen-
tal programs. The review emphasizes that a solid understanding of these
advances is required before environmental scholars and practitioners can
begin to collect the relevant data, analyze them within credible research de-
signs, and generate reliable evidence about the effectiveness of the myriad
proposed solutions to the world’s environmental and social problems.
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INTRODUCTION

In the past three decades, scholars have made substantial advances in the empirical study of causal
relationships—the effect of one variable on another (1-5). These advances can contribute to better
empirical evaluations of the environmental and social impacts of environmental programs, yet they
have passed largely unnoticed by environmental scholars and practitioners (6).

In this review, we highlight the key components of these advances: (#) creative and transparent
ways to identify and eliminate rival explanations for observed empirical patterns; (b) precise, trans-
parent definitions of causal effects in terms of potential outcomes, both observable outcomes and
unobservable, counterfactual outcomes; (¢) a focus on design over methods, with a concomitant
emphasis on understanding selection (why are some areas, households, villages, or species exposed
to a program and others are not?); and (4) an obligation to make transparent the assumptions
required for causal inference and then to interrogate these assumptions with theory and data.
Transparency about assumptions is critical because causal inferences come from a combination of
data and untestable assumptions, never from the data alone.

Causal Effects and Potential Outcomes

Scholars describe causal effects through the language of potential outcomes (often called the
Rubin or Neyman-Rubin Causal Model). To describe an effect of an antipollution program,
D, on a pollutant, Y, in location 7, one can think about two potential pollution outcomes: the
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outcome that would be observed in the presence of the program, Y;(1), and the outcome that
would be observed in the absence of the program, Y;(0) (i.e., with no program or with an alternative
program).!

The causal effect of program D at location 7 at a particular point in time can be defined as the
difference in the two potential outcomes (we suppress the time subscript):

8 = Yi(1) — Y;(0). 1.

In other words, the impact of D at location 7 is the difference between pollution with D and
pollution without D (whatever else in the environment that is unaffected by D evolves the same
in both potential states of nature). This way of viewing causal effects highlights two important
insights: (#) a causal effect of a program is only defined with respect to a well-defined alternative—
one must clearly define what D = 0 means, and () causal effects are unit-specific and may be
heterogeneous—different locations may respond differently to program D. As we describe below,
one’s beliefs about this heterogeneity affects the assumptions required to draw inferences and how
one interprets the results of an empirical study.

The challenge for scientists is that, atany given moment, we can observe either Y;(1) or Y;(0), but
not both. The unobservable potential outcome is termed the counterfactual outcome. Although
we might not be able to draw inferences about the causal effect of exposure to D for a specific
location, we may be able to draw inferences about the distribution of the effect over a relevant
population of locations. For example, using the dominant jargon in the causality literature, we can
define the average treatment effect, or ATE (treatment = program/cause):

ATE = E[Y; (1) - i (0)] = E[Y; (1)] — E[Y; (0)], 2.

where E[.] denotes the expectation operator from probability theory. In words, the ATE is the
expected causal effect of D on Y for a randomly chosen unit 7 from the relevant population (units
could be locations, firms, households, individuals, species, etc.).

Estimating ATEs is easier than estimating individual-level treatment effects, but the funda-
mental problem of unobservable counterfactual outcomes remains. For treated units exposed to
D, we observe only E[Y;(1)]; E[Y;(0)] is a counterfactual outcome. For untreated units not exposed
to D, we observe only E[Y;(0)]; E[Y;(1)] is a counterfactual outcome.

Impact evaluation focuses its efforts on finding credible ways to estimate these counterfactual
outcomes, using what we can observe as a surrogate for what we cannot. In other words, we seek
a group of untreated units for which E[Y;(0)] can represent the counterfactual outcomes of the
treated units and a group of treated units for which E[Y;(1)] can represent the counterfactual
outcomes of the untreated units. To estimate the ATE, we seek units for which E[Y;(0)ID; =
0] = E[Y;(0)ID; = 1], where “ID; = 1” denotes “conditional on the unit being exposed to the
treatment” and “ID; = 0” denotes “conditional on the unit being exposed to the untreated, or
control, condition” (in words, we seek treated and untreated units for which the mean observed
outcome under the control condition for the untreated units is equal to the mean counterfactual
outcome for the treated units, had they instead been exposed to the control condition). We also
seek units for which E[Y;(1)ID; = 1] = E[Y:(1)ID; = 0].

In most cases, however, we do not want to know the expected effect of a cause on a randomly
chosen unit from the population. We wish to know the causal effect on a randomly chosen unit

"We assume that D is binary—it is either present (D = 1) or not present (D = 0). Allowing the program to vary in composition
or strength simply generates more potential outcomes (e.g., pollutant levels with strong or weak versions of the program).
More potential outcomes make causal inference more complicated but no different in terms of the basic concepts.
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that was actually exposed to the program: the average treatment effect on the treated, or AT'T:
ATT = E[Y; (1) = ;01 D; = 1] = E[Y;(1)ID; = 1] = E[Y;(0)|D; = 1]. 3.

The ATT will not equal the ATE if the units exposed to the program respond differently to the
program than the unexposed units would respond (i.e., heterogeneous responses), such as if the
locations exposed to an antipollution program are more responsive to the program, on average,
than locations not exposed to the program would have been had they been exposed. To estimate
the ATT, one needs only to seek units for which E[Y;(0)ID; = 0] = E[Y;(0)ID; = 1]: ie., a
group of untreated units that represent what would have happened among treated units had they
not been treated.

In addition to the ATE and ATT, other causal effects may be of interest, including the average
treatment effect on the untreated, or ATU (the expected impact on a randomly chosen untreated
unit had it been exposed to the program); local ATEs; intent-to-treat effects; and others. In fact,
for any particular outcome and data set, one might estimate myriad causal effects, some of which
are policy relevant and others that are not, but each requires different untestable assumptions to
estimate them from the data (7). Without additional modifiers, terms such as impact and causal
effect shed little light on the policy relevance of an estimated impact or on the assumptions required
to draw inferences about its value from data.

Rival Explanations

Every scientist has heard the adage that correlation does not imply causation. The adage has a
kernel of truth but is often erroneously interpreted as implying that one cannot draw causal infer-
ences from correlational data or that all correlations have equal value (or equally lack value). The
adage’s kernel of truth is captured in Figure 1. We wish to estimate a causal relationship between
an intervention, D, and an outcome, ¥, and believe that D affects ¥ through some mechanism(s),
M. A correlation between values of D and Y may not reflect a causal relationship between D and ¥,
justas the absence of a correlation would not necessarily reflect the absence of a causal relationship.

Drawing causal inferences from correlations is complicated by the presence of confounders:
observable variables, X, and unobservable variables, U, which are common causes of both D and Y.

X
/.\.G
D@® > @ > Q@Y
~ M >

~ -

/® o
U

Figure 1

A directed acyclic graph in which a single-headed arrow (—) represents a causal link or pathway between two
variables, represented by nodes. Four empirical designs for estimating causal effect of treatment (D) on
outcome (1) are depicted: (1) Exert experimental control on D; (2) condition on observable confounders (X)
and assume that unobserved confounders (represented by the dashed singled headed arrows and open node
at U) do not exist; (3) exploit variation in D that comes from a source (J) that has no path to ¥ except through
D; and (4) identify an isolated and exhaustive set of mechanisms (M).
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Any correlation between D and Y may thus reflect the influence of confounders rather than a true
causal relationship between D and Y. In other words, the assignment of D may not be independent
of potential outcomes, and we thus have to be careful about using outcomes we can observe as
surrogates for counterfactual outcomes.

For example, until recently, the conservation literature measured the environmental and so-
cial impacts of protected areas, such as national parks, by contrasting outcomes in protected and
unprotected areas. The average outcome in unprotected areas (E[};(0) | D; = 0]) served as a sur-
rogate for the average counterfactual outcome of the protected areas had they not been protected
(E[Y;(0)ID; = 1]), as if these areas were randomly assigned. Protected areas, however, follow a
well-known global pattern of assignment: They are systematically placed in areas that are less
productive for alternative economic uses (8-10).

If we were to ignore this selection process and simply estimate the correlation between pro-
tection and an outcome, we could not determine if the correlation arose from a causal effect of
protection or, for example, from the differences in productive characteristics between protected
and unprotected areas. In other words, if variables X and U exist, but are ignored by the analyst,
the estimator of the correlation between D and Y contains hidden bias (in the social sciences, the
source of hidden bias is often termed unobservable heterogeneity and the problem it creates is
called endogeneity). Such bias is different from sampling error (i.e., a correlation exists between
D and Y in a sample by chance); tests developed to characterize the uncertainty that arises from
sampling variability (e.g., t-tests, chi-squared tests) do not characterize the uncertainty associated
with hidden bias.

The variables X and U are rival explanations for the observed relationship between D and Y. To
confidently estimate the impacts of environmental interventions, scientists must seek to eliminate
such rival explanations. The quality of an impact evaluation is a function of how well one identifies
and eliminates rival explanations and, when one cannot eliminate rival explanations, how well one
considers the implications of the rival explanations (see below). The search to eliminate rival
explanations puts empirical design, not empirical methods, front and center.

All designs aimed at causal inference can be put into four categories, although the specific
causal effects that a design can identify within the same population can vary:

1. Designs that depend on experimental control in which D is varied in ways that are unrelated
to potential outcomes [e.g., randomized controlled trials (RCTs)]. Rival explanations are
thus eliminated by the experimental control.

2. Designs that depend on conditioning strategies (e.g., regression, matching, fixed effects
estimators) in which one assumes that hidden bias comes only from observable variables (X)
or from unobservable variables that are either perfectly correlated with observable variables
or are time invariant. By controlling for, or blocking, these relationships between D and Y,
one eliminates them as rival explanations [called the “back-door criterion” by Pearl (1)].

3. Designs that depend on naturally occurring sources of variation in D that are unrelated to
potential outcomes (e.g., instrumental variables and discontinuities). In these designs, an
observable variable, I, is assumed to be unrelated to potential outcomes except through its
effect on D. These designs are often called natural experiments.

4. Designs that depend on identifying a set of mechanisms, M, through which the effect of
D and Y can be estimated through a two-step process that estimates the effect of D on M
without bias, and then estimates the effect of M on Y without bias [called the “front-door
criterion” by Pearl (1)].

These designs highlight a fundamental feature of all good impact evaluations: Understanding
selection is absolutely critical. By selection we mean the process by which some units come to be
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“THE EFFECTS OF CAUSES” VERSUS “THE CAUSES OF EFFECTS”

Figure 1 illustrates two important insights from recent advances in causal inference. First, to develop an unbiased

estimator of an effect of D on Y (the effect of a cause), we do not need to know G, which captures all the other

factors that influence Y. We need focus only on potential sources of hidden bias: X and U. Second, tackling hidden

bias in a study that aims to estimate the effects of a single cause is difficult. Tackling such bias in a study that aims to
estimate the effects of multiple causes (G) on a single Y (the causes of an effect) is, in our opinion, beyond the reach
of current theory and data. For example, a study that purports to estimate the causes (determinants) of deforestation
would be better viewed as a study that generates hypotheses for future studies of individual causes, rather than

a study that credibly estimates causal relationships between myriad variables and deforestation. The assumptions

required to identify the effect of a single cause can be daunting; the likelihood that the same assumptions hold for

many variables in a single study is low.

exposed to the treatment and others are not. In the absence of a solid understanding of selection,
credible causal inference is simply not possible (see sidebar, ““The Effects of Causes’ Versus “The
Causes of Effects”).

Thus, although impact evaluation is an empirical effort, a strong, elaborate theory of the causal
pathways and the potential confounders is absolutely critical. Such theories, combined with a deep
understanding of field conditions, elucidate the potential designs that can be used to estimate an
impact and highlight ways of probing the untestable assumptions required to assign a causal
interpretation to a correlation. They also help guide efforts to elucidate the heterogeneity of
impacts and the causal mechanisms (see section on Heterogeneity and Mechanisms).

EXPERIMENTAL DESIGNS

Randomization and Experimental Control

Experimental control, particularly through randomization, makes the estimation of counterfactual
outcomes easier. An intervention assigned at random is assigned independent of potential outcomes
(i-e., in Figure 1, there are no X or U confounders). The treated and untreated groups are just
two random samples from the population. The expected potential outcomes of the two groups are
thus equal:

E[Y;:(OID; = 1] = E[Y;(0)| D; = 0] = E[Y;(0)] 4.

E[Y;(DID; = 0] = E[Y;(DID; = 1] = E[Y;(1)]. 5.

We can therefore use untreated group outcomes as a surrogate for the counterfactual outcomes of
the treated group and treated group outcomes as a surrogate for the counterfactual outcomes of the
untreated group. With experimental control, the main threat to inference is sampling variability,
not bias, and we have well-developed methods for characterizing the uncertainty associated with
sampling variability (e.g., t-tests).?

2All designs have two implicit assumptions: (#) common support and (4) no interference among units. We do not discuss them
because of space constraints, but they are important. Common support means that we can define a causal effect only for units
that can be potentially exposed to treatment and control conditions. No interference among units—also known as the stable
unit treatment value assumption (SUTVA)—means that whether or not unit 7 is treated has no effect on unit ;’s potential
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Despite its advantages, experimental design is rare in the context of environmental programs
(15). Yetas scholars and practitioners recognize its potential and see its application to nonenviron-
mental programs, it is increasingly being applied. Most experimental designs have been applied
to test new programs or program elements in the energy and water domains (e.g., 16-21). Other
experiments test different ways of implementing existing programs (e.g., 22, 23).

In some cases, randomizing interventions to a single unit (e.g., household) is not possible or
desirable, but randomizing interventions to groups of units (e.g., villages) is possible. Clustered
RCTs are common in other fields (e.g., education) and are being tried in the context of envi-
ronmental policy. For example, in Uganda, the United Nations Environmental Programme has
developed a project aimed at assessing the impact of payments for ecosystem services on poverty
and deforestation. Communities were selected at random for the intervention from a pool of
communities considered at risk for deforestation (15).

Other Experimental Designs

Experimental control can also be applied in other ways. For example, in a home weatheriza-
tion program designed to reduce energy use, no household was excluded from participation, but
some households were randomly given incentives to participate (24). Thus, some households
were exposed to the program for reasons unrelated to their potential energy use. Randomized
encouragement designs identify only the impact for the subpopulation of units whose decision to
participate is affected by the encouragement, a so-called local average treatment effect (LATE).
Units that, despite the encouragement, fail to participate in the program, or units that would have
participated even without the encouragement, may respond differently. A LATE may be policy
relevant (i.e., the scaled-up program will include encouragement) or it may be better than having
no estimate of impact at all (25). To map the LATE to broader impacts like the ATE or the ATT,
more assumptions, based on theory and field knowledge, are required (26).

Experimental designs can also provide evidence about the mechanisms through which in-
terventions affect outcomes (27). In such designs, the mechanisms themselves, rather than the
interventions, are randomized. For example, one might hypothesize that some protected areas are
more effective than others because they have clear boundary demarcation and local community
participation. One could randomize these mechanisms in space or time to draw inferences about
their contribution to environmental impacts.

Gold Standard?

Experimental designs are neither feasible nor desirable for all contexts [for conditions under
which such designs are most desirable and ethical, see Ferraro (15)]. We do not wish to raise
experimental designs on a pedestal and assert that they are the gold standard. In practice, they are
subject to many threats to validity, including noncompliance, attrition, and randomization biases
(26), and are justly criticized for their frequent lack of external validity and inability to elucidate
mechanisms. Although there have been important advances in addressing these critiques (26), the
role of experimental design in environmental and resource policy evaluations will be modest.
However, when done well, experimental designs are open to fewer challenges than nonexperi-
mental designs. Moreover, even if randomization of an intervention were impossible, the RCT is

outcomes (i.e., no spillovers). In the context of the environment and natural resources, SUTVA is not trivial, but advances
have been made in addressing violations of this assumption (e.g., 11), and studies have illustrated empirical methods to test
for such violations (e.g., 12-14).
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an important conceptual benchmark to which all other designs are compared. As described in the
next sections, understanding how one’s design differs from the idealized RCT benchmark helps
clarify the necessary assumptions as well as the particular causal effect that is being estimated.

CONDITIONING DESIGNS

Confounders

In the environmental literature, researchers typically seek to eliminate rival explanations through
conditioning designs. The most common conditioning design asserts that the confounders are
observable (X in Figure 1) and that one can eliminate their influence through methods such as
regression or matching. Although the methods differ, their underlying assumptions are the same.
To estimate the ATE, one makes the following assumptions:

Assumption 1: E[Y;(0)|D; = 1, X] = E[V;(0)| D; = 0, X] = E[Y;(0)|X], 6.

Assumption 2: E[Y;(1)|D; = 0, X] = E[T;()|D; = 1, X] = E[¥;(1)|X]. 7.

In other words, once we condition on X, valid counterfactuals for treated and untreated groups can
be estimated from observable data, on average.> Unobservable confounders like U are assumed
not to exist, or are perfectly correlated with X.

For example, assume that sex is a confounder. Males are much more likely to be exposed to D
and are more likely to have high values of Y. A simple comparison of average outcomes for treated
and untreated individuals will reflect the influence of sex, as well as any causal relationship between
D and Y. Instead, we could compare average outcomes separately within the subgroups of males
and females. Within each of these subgroups, sex cannot be a confounder. To obtain an estimate
of the ATE, we invoke Assumptions 1 and 2 and take a weighted average of the two subgroup
estimates (weighted by percentages of males and females in the sample). If we are interested only in
the ATT, we need invoke only Assumption 1 and use a different weighting (by percentages of males
and females in the treated group). In other words, we need only assume that, after conditioning on
X (sex), the treated and untreated groups would have the same mean outcomes in the absence of
D. In the presence of D, the treated and untreated groups could respond differently, on average,
to D, even after conditioning on X (Assumption 2 can be violated).

The dilemma for researchers is determining what variables comprise X. To guide their efforts,
researchers need strong, elaborate theories and a solid understanding of the program and field
conditions. In any applied context, however, there will be limits to how many potential confound-
ing variables can be measured and included. The most important variables are those that are
known to have a strong influence on both treatment selection and outcome, followed by variables
that have a strong effect on selection and a weak to moderate effect on outcomes. These variables
should be measured before the program starts. Conditioning on postprogram values can intro-
duce bias if the variables are affected, directly or indirectly, by the program. Design-replication
studies that contrast the results from a conditioning design with the results from an experimental
design benchmark using the same treated group imply that having preprogram outcome values is
important; without them, impact estimates from conditioning designs are less likely to be accurate

3Some scholars prefer to invoke a stronger version of these two conditional mean independence assumptions, often called
ignorability or the conditional independence assumption (CIA). The CIA implies that, after conditioning on X, D is inde-
pendent of ¥(0) and ¥(1) and all transformations of ¥(0) and ¥(1), i.e., (¥(1),(0)) L DI1X. In words, once we condition on X,
exposure to the program is “as if” randomly assigned.

Ferraro o Hanauer



Annu. Rev. Environ. Resourc. 2014.39:495-517. Downloaded from www.annualreviews.org

by Georgia State University on 10/21/14. For persona use only.

(28-32). These studies also imply that drawing control and treated units from similar economic
and biophysical environments is also important. The task of identifying potential confounders, and
collecting accurate data on them, is far more important than the task of identifying the methods
through which one will condition on X.

Matching and Regression Methods

The most common methods for conditioning are regression and matching. Contrasting the two
methods is beyond the scope of this review (see 4, 5). Given the paucity of matching studies
in the environmental literature, we focus on the use of matching methods and emphasize a few
important contrasts with regression. Readers interested in more details can find good summaries
of both common matching methods (33, 34) and recently developed matching methods (35, 36).

Although many algorithms exist for matching treated and untreated units, the intuition behind
them is the same. In an RCT, the expected characteristics of the units in the treated and untreated
groups are similar. Thus, their expected potential outcomes are similar. Matching is an attempt to
reweight the treated and untreated groups in a nonexperimental study so that the two groups look
as if they came from an RCT. Specifically, we wish to see that the distribution of the X variables
(the assumed confounders) are similar in our treated and our untreated groups (i.e., X can no
longer be a rival explanation).

The quality of a matching exercise is judged by both the quality of this covariate balance and
the credibility of the conditional mean independence assumptions. No study using matching
is complete without evidence that the distributions of the identified confounders are balanced
across treated and untreated groups. In some cases, covariate balance can be achieved only for
a subset of the relevant population through methods that eliminate poor matches (e.g., calipers
or propensity score trimming). In this case, the causal effect being estimated may differ from the
effect originally sought.

Although there is no agreement in the literature on exactly how best to judge covariate
balance (see 38), Figure 2 illustrates some popular metrics. Andam et al. (37) wished to estimate
the average effect of legal protection on poverty near Costa Rican protected areas (the ATT).
However, the distributions of the preprotection characteristics of protected and unprotected
communities are quite different. This imbalance is a concern because these same characteristics
are also likely to affect poverty in the absence of protection. After matching, however, the
imbalance is small. If these seven measures capture the most important confounders, then
Assumption 1 is a credible approximation of reality, and a contrast of the average outcomes
between protected and matched unprotected communities is an unbiased estimator of the ATT.

Matching methods have been applied to the evaluation of a wide range of environmental
policies, including air-quality regulation (39, 40), voluntary pollution standards (41), farmland
conservation (42), eco-certification (43), integrated conservation and development projects (44),
payments for ecosystem services (14, 45), and ecosystem conservation (46-51).

Like matching, regression methods require Assumptions 1 and 2 to draw causal inferences
from regression coefficients (expressed as “the error term of the regression model is uncorrelated
with the treatment variable,” or “E[#|D, X] = E[u|X]”). However, in finite samples, regression
and matching can generate different impact estimates.

Matching has some advantages over regression that may favor it in applied contexts: (#) its
design and results are more easily communicated to scholars and practitioners who lack strong
statistical training; () it forces researchers to determine if each treated unit has a valid control (i.e.,
common support)—regression, which depends on extrapolation based on a prespecified model,
fails to alert researchers to the incompatibility of treated and control units; (c) it is less sensitive to

www.annualreviews.org o Advances in Impact Evaluation

503



Annu. Rev. Environ. Resourc. 2014.39:495-517. Downloaded from www.annualreviews.org
by Georgia State University on 10/21/14. For personal use only

Covariate balance table

Mean Mean Difference Normalized MeaneQQ % Improve
Covariate Sample protected unprotected in means difference difference mean difference
— — | Preprotection Unmatched 13.640 6.573 7.068 0.602 7.079
1 poverty index  Matched 13.506 13.824 -0.317 0.025 0.495 95.51%
1
| Preprotection ~ Unmatched 0.512 0.138 0.374 0.577 0.373
1 % forest Matched 0.506 0.505 0.00039 0.001 0.010 99.89%
1
1 % Land use Unmatched 0.078 0.345 -0.267 0.384 0.267
1 capacity 1,23  Matched 0.077 0.10 -0.023 0.049 0.023 91.36%
1
1 % Land use Unmatched 0.170 0.413 -0.243 0.327 0.243
1 capacity 4 Matched 0.170 0.170 -0.00001 0.000 0.013 99.99%
1
1 % Land use Unmatched 0.222 0.193 0.0288 0.043 0.089
1 capacity 56,7  Matched 0.219 0.206 0.0137 0.023 0.020 52.35%
1
1 Distance to Unmatched 58.048 35.490 22.558 0.268 22.510
1 major city Matched 57.449 55.895 1.553 0.015 5.182 93.11%
1
1 Preprotection ~ Unmatched 441.986 22.837 419.148 0.285 416.354
1 road networks ~ Matched 436.564 281.715 154.849 0.090 157.296 63.05%
1
1
1
1
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Matching methods seek to achieve covariate balance. Based on data from a study of the impact (AT'T) of protected areas on poverty
(32), the table shows three popular metrics for assessing covariate balance among protected and unprotected census tracts before and
after matching: difference in means, normalized difference in means (the absolute value of the difference in means divided by the square
root of the sum of variances of the treated and control groups), and the mean difference in the empirical quantile-quantile (¢QQ) plot.
As the bottom image depicts, effective matching makes the covariate distributions of protected and unprotected census tracts more
similar (dashed vertical lines are means). (AT'T, average treatment effect on the treated.)
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IMPACT EVALUATION AND THE “QUANTITATIVE VERSUS QUALITATIVE”
DEBATE

Social scientists have long debated the contributions of quantitative and qualitative analyses. We are hesitant
to enter the fray, but wish to mention four key roles that qualitative information plays in impact evaluations:
() eliminating rival explanations; (b) understanding an evaluation’s limitations (i.e., external validity); (¢) identifying
causal hypotheses to test; and () identifying factors that may serve as moderators and mechanisms. With regard
to eliminating rival explanations, one should accept support from wherever one can find it. For example, one may
observe a positive correlation between variable D and variable Y and be concerned that the correlation exists because
of some other variable, X, that may be correlated with D and Y. One might have information from semistructured
interviews in which people describe the key characteristics of a person who is exposed to D. If no respondents ever
mention X, this qualitative information supports eliminating the rival explanation X. Nevertheless, we believe it
would be hard (but not impossible) to establish a credible claim of causality using only qualitative data, whereas we
believe one can establish a credible claim with only quantitative data.

the specific functional form of the relationship between X and Y (52), which can be a problem for
regression when there is severe covariate imbalance between the treated and untreated groups and
strong heterogeneity of the causal effects; and (4) unlike regression, it permits one to search for
covariate balance without ever looking at the outcomes, thereby making research design choices
independent of the estimated impact. Recent studies have argued that combining matching and
regression may be superior to relying on either alone (32, 34, 52, 53).

Panel Data and Synthetic Control Designs

With additional untestable assumptions and repeated observations of the same units (panel data)
before and after treatment assignment, one can also eliminate the effects of unit-specific, unob-
served confounders that do not change over the study period (4). Such fixed-effects designs are
relatively rare in the environmental literature (see, e.g., 54-57). With longitudinal data, researchers
more often use so-called random effects models (often called hierarchical models). These models
have more statistical power than fixed effects models, but they are much more vulnerable to hidden
bias because they assume all sources of confounding are in the model.

Repeated observations can also be useful when the treatment group is a single unit (e.g.,
a protected area or a watershed) and there are many potential control units. In such cases, a
combination of untreated units often better reproduces the characteristics of the treated unit than
a single untreated unit alone could (58). This design, which uses transparent rules for creating a
synthetic control, can improve the comparative case-control designs that are often used in impact
studies of marine protected areas and community natural resource management. We know of no
examples of this design in the environmental literature.

INSTRUMENTAL VARIABLE AND DISCONTINUITY DESIGNS

If one believes that there are unobserved sources of bias (U in Figure 1), one may be able to
use theory and a deep knowledge of an intervention’s implementation to identify sources of
variation in exposure to the intervention that are uncorrelated with potential outcomes. These
designs are most commonly implemented through the exploitation of instrumental variables (IVs)
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and discontinuities in program eligibility (see 4, 5). Such designs are rare in the environmental
literature, a reflection of the inchoate state of environmental program evaluation.

Instrumental Variables

An IV is something that affects which units are exposed to the program (selection) but does not
affect the outcome except through its effect on the program—i.e., variable I in Figure 1. For ex-
ample, Sims (59) uses “priority watershed status” as an IV to measure the effect of protected areas
on poverty. She shows that priority status, which is determined by proximity to the headwaters
of major rivers, affects the probability that the government will establish a protected area. Then
she claims that status is determined by the downstream destination of waterways and that it would
therefore neither affect poverty near the protected areas nor be correlated with local character-
istics that affect poverty. The negative correlation she finds between priority status and poverty
must therefore reflect a causal relationship between protection and poverty reduction. Although
a credible IV is hard to find, there are other examples illustrating the use of IV designs to evaluate
environmental programs (see, e.g., 60-62).

Like the randomized encouragement designs discussed above, IV designs can only identify a
LATE. For example, Sims’s (59) IV design estimates the effect of protection on poverty among
the localities whose exposure to a protected area is determined by whether or not they are located
in the upper watershed. These localities are called compliers. One can sometimes estimate the
proportion of the sample that is composed of compliers, but one cannot identify the compliers.
A LATE estimate is specific to the IV: A different IV would likely identify a different LATE for
the same D and ¥, which can make comparisons across IV studies difficult. Transforming a LATE
into broader impacts like the ATE or the ATT requires assumptions, based in theory and field
knowledge, that relate the compliers to the rest of the sample (4).

Discontinuities

Like IV designs, discontinuity designs exploit knowledge about the factors that affect program
exposure (see, e.g., 54, 63, 64). For example, Alix-Garcia etal. (65) sought to estimate the effect of a
Mexican antipoverty program on deforestation. However, many unobservable characteristics that
affect which communities are exposed to the program also affect land use, and thus deforestation.
To eliminate these rival explanations, the authors took advantage of a program eligibility rule:
Only communities with a poverty score over a certain value are eligible for the program. The rule
creates a discontinuity in the probability of program participation: It jumps from very low to very
high near the threshold score. Given the way the poverty score is calculated, the authors argue that
there is no reason to believe there would be a discontinuous jump in deforestation at the threshold
in the absence of the program—the communities on either side of the threshold are quite similar.
Yet they detect a discontinuous jump in deforestation right at the threshold and conclude that the
antipoverty program nearly doubles the probability of deforestation. Using theory and other data,
they strengthen these conclusions by showing that jumps do not occur at other values of the score
and by identifying and estimating the effects of plausible mechanisms through which the program
could affect deforestation. Like IV designs, discontinuity designs identify a treatment effect for a
subgroup of units—those that are near the discontinuity. To extrapolate the effect to the broader
population, more assumptions and modeling are necessary.*

*Discontinuities formed by geography, such as a line on a map, are also sometimes used (66). Such designs, however, assume
that nothing that affects outcomes changes dramatically at the discontinuity, other than exposure to the program. That
assumption can be hard to justify (67).
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MEASUREMENT ERROR

Evaluators often ignore the implications of measurement error in their treatment variable, in their outcome variable,
and in their conditioning (control) variables. Recent research has demonstrated, however, that these errors are often
not random, and ignoring them can lead to serious bias (62, 73). Even worse, it can be quite difficult to sign the
direction of the bias in many cases.

INTERROGATING THE ASSUMPTIONS

High-quality evaluations do not end with the estimation of an impact. As noted above, causality
cannot be inferred from the data alone; one must also rely on untestable assumptions about
counterfactual outcomes. To explore the credibility of these assumptions, evaluators rely on two
types of approaches: (#) approaches that seek evidence for violations of the assumptions, and
() approaches that explore the implications for the study were such violations to exist. Figure 3
captures the intuition behind both approaches. In designs that depend on conditioning, we seek
evidence of the red line from U to D (hidden bias) and explore the implications if such a line were
to exist. In designs that depend on IVs and discontinuities, we seek evidence for, and explore the
implications of, a red line from U to I or from [ to U.

Tests of Known Effects

To probe whether the assumption of no hidden bias may be false, analysts can use tests of known
effects [also called placebo or falsification tests (2)]. These tests require an elaborate theory of
causal pathways and good knowledge of field conditions. In one type of test, the analyst posits the
potential unobserved source of bias, U. For example, in the case of water conservation incentive
programs, one might worry that unobservable proenvironment preferences are stronger among
participants than nonparticipants. Next, the analyst identifies an outcome, Z, that is known (or

X
® oG

Figure 3

Directed acyclic graph depicts potential sources of hidden bias when estimating an effect of program D on
outcome } by conditioning on observable confounders X or exploiting variation in D that comes from
variable I. These sources are rival causal pathways (red dashed arrows) related to unobserved confounders U.
Tests of known effects attempt to detect these rival pathways by testing for a correlation between D or [ and
an outcome, Z, that is known (asserted) to be unrelated to D or I (i.e., theory and experience imply that no
arrow goes directly from D or I to Z). A detected correlation implies the presence of a rival pathway
through U.
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INTERNAL VERSUS EXTERNAL VALIDITY

This review focuses on internal validity—whether a correlation implies a causal relationship. In contrast, external
validity considers whether an implied causal relationship can be generalized to other settings. Debates about which
type of validity is most important sometimes arise. These debates can often be defused by using environmental
programs to test the theories that underlie the design of the programs. For example, suppose an elaborate theory
predicts that wider local participation in community land management will lead to four changes in environmental
and social outcomes through three mechanisms, whose effects are moderated by two factors. If we test that theory
using program X in country Z, we create more generalizable and useful knowledge than if we simply found that
program X increased basal stem density and household income (one must, however, confirm that the program
can be interpreted as embodying the constructs in the theory, called construct validity). We thus address external
validity through theory development and testing, rather than by finding a representative program and site in which
we measure impacts. As theories become more elaborate and the evidence for them stronger, our knowledge about
how best to design environmental programs will grow.

believed) to be affected by U, but not by D. In the case of the water conservation incentive program,
Z might be solid waste recycling. Using the design that purports to identify an impact of incentives
(D) on water conservation (¥), the analyst estimates the effect of D on Z. If the estimated effect
were different from zero, it would raise concerns that the design suffers from hidden bias. In other

words, it would imply that the red directed edge from U to D in Figure 3 exists.

Two other popular tests of known effects include (#) demonstrating that the program has
no effect on preprogram outcomes but that it does have an effect on postprogram outcomes,
and (b) confirming a theoretically predicted dose-response relationship between D and Y (e.g.,
and showing that the effect of D5™°"¢ is larger than the
effect of DWe). All tests of known effects are indirect, however, and depend on the validity of

decomposing D into DS""¢ and DWeak

theory and field knowledge. None can disconfirm hidden bias.

Partial Identification and Sensitivity Analyses

High-quality impact evaluations must therefore consider the implications of potential hidden bias.
In other words, one should posit that the red lines in Figure 3 may exist and then ask how the
conclusions would change (2, 68-70). To do this, studies rely on three approaches: (#) an informal
approach that merely tries to sign the direction of potential bias (i.e., given the most likely rival
explanations, is our impact estimate likely to be an upper or a lower bound on the true impact?);
(b) partial identification, which starts with weak assumptions about the data-generating process
in order to bound the potential values of the impacts, and then progressively makes the assump-
tions stronger to shrink the plausible bounds (see, e.g., 45); and (¢) sensitivity analysis, which
starts with strong assumptions and then asks how strong the hidden bias would have to be in
order to change our conclusions (see, e.g., 71, 72).° Like the tests of known effects, all three ap-
proaches require a good grasp of the relevant theory and field conditions, and none can disconfirm

hidden bias.

SWhen multiple control groups are available (e.g., two different surveys on nonparticipants exist), they can be used both to

test for hidden bias and to bound the range of plausible impact estimates (see 2, 71).
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HETEROGENEITY AND MECHANISMS

Moderators

With a credible estimate of an impact, one can explore the factors that moderate the magnitude
of the impact and the mechanisms through which the impact arises. A moderator is a variable that
is unaffected by the intervention and whose value affects the magnitude of an impact (e.g., pre-
intervention poverty of the participating communities). A mechanism is a variable that is affected
by the intervention and in turn affects the outcome (e.g., community forest management provides
a stable source of household revenue, which then reduces poverty).

Figure 4 illustrates two ways to think about moderators. In Figure 44, a sample of Costa Rican
forest parcels is divided into subgroups: areas with high or low preprotection poverty, and areas
with high (steep) or low (flat) slopes. The bar charts portray the estimated subgroup impacts of legal
protection on poverty and avoided deforestation (conditional AT T's). These estimated conditional
impacts include the contribution of all the other characteristics that might be correlated within a
subgroup (for other examples, see References 51, 57).

Figure 4b presents an alternative way of thinking about heterogeneous effects (see also the
sidebar on “Recommendations for Estimating Heterogeneous Effects”). Using partial linear mod-
eling, the conditional impacts are estimated along the entire range of the observable characteristic,
holding constant the other observable characteristics. Other studies use interaction terms in a re-
gression specification to estimate conditional mean impacts, holding constant the other observable
characteristics (see, e.g., 14, 23, 59, 76).

If one understands what factors moderate the magnitude of an impact, one can improve program
cost-effectiveness and avoid harms. For example, Ferraro & Miranda (77) find that by targeting
water conservation efforts only at wealthy home-owning households that historically use a lot of
water, a US program could reduce its costs by over 50% but suffer only a 20% reduction in its
target of water savings and simultaneously avoid the political conflict that can arise from asking

RECOMMENDATIONS FOR ESTIMATING HETEROGENEOUS EFFECTS

® Prior to analysis, select a small (<5) number of theoretically motivated or policy-relevant subgroups.

® Jf treatment is randomized, randomize it within the selected subgroups.

® When the null hypothesis of the unconditional treatment effect equal to zero cannot be rejected, be wary of
estimating conditional effects unless randomization was done within subgroups. First conduct a test of the
null hypothesis that the average conditional effect is equal to zero across all subgroups (79).

® When the hypothesis of the treatment effect equal to zero can be rejected, first do a joint test of the null
hypothesis that all subgroup effects are equal to zero (e.g., an F-test; a quantile model combined with a
rank preservation assumption; or a test of the null of constant conditional average treatment effect, as in
Reference 79).

® If the null hypothesis that all subgroup effects are equal to zero can be rejected, first do a subgroup analysis
that does not hold everything else equal before attempting to estimate conditional effects that hold everything
else constant (e.g., partial linear modeling).

® For subgroup analyses that rely on multiple hypothesis testing, maintain a constant family-wise type I error
rate.

B Interrogate the assumptions.
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Heterogeneous impacts. Based on data from two studies (74, 75), panel # depicts the estimated impacts of Costa Rica’s protected areas
on deforestation and poverty conditional on high or low values of observable moderators of the impacts (i.e., conditional ATTs). Based
on results from a nonparametric partial linear model (PLM), panel & depicts estimates of the conditional ATT along the entire range of
moderator values, after controlling for the influence of other moderators. (CI, confidence interval; ATT, average treatment effect on

the treated.)

low-income users to reduce their water use. Understanding which factors moderate program
impacts can also help practitioners predict program impacts in new areas or in the future.

If one understands what factors moderate multiple impacts, one can explore potential trade-
offs in different targeting strategies. For example, Ferraro et al. (75) find that, for protected
areas in Costa Rica and Thailand, the targeting rules that would lead to the largest reductions in
deforestation are not necessarily the rules that would lead to the largest reductions in poverty.
Figure 4b illustrates their results for Costa Rica.

Estimating conditional causal effects requires even more elaborate theories and more untestable
(and often less credible) assumptions than were required to estimate unconditional effects. Thus,
even in RCTs, subgroup effects are considered much less credible than unconditional effects (78).

Mechanisms

In contrast to a moderator, a mechanism lies on the causal pathway between D and Y. Figure 5
illustrates potential mechanisms for an intervention that creates community forest management
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Directed acyclic graph depicts the framework for estimating causal mechanism effects through a two-step
process: estimate the impact of treatment (establishment of a forest user organization) on the mechanisms
(security of property rights, participation in rule making, and technical advice), and then estimate the impact
of the mechanisms on the outcome (tree species richness). When the set of observable mechanisms is not
exhaustive, the overall impact can be decomposed into observed mechanism effects and unobserved
mechanism effects. The broken, red, single-headed arrows illustrate that conditioning breaks the
confounding causal pathways to help identify the causal mechanism effects.

institutions. The contributions of each mechanism to changes in species richness can be estimated
in a two-step process. First, one estimates a causal effect of creating institutions on the mecha-
nisms. Second, one estimates how the program’s effect on each mechanism affects species richness.
Figure 5 also illustrates the obstacles. First, one must control for confounding variables that jointly
affect intervention, mechanisms, and outcome. Second, one must model the effect of the inter-
vention on the outcome in the absence of the mechanisms.

Estimates of mechanism effects are rare in the environmental literature. Using a two-stage
approach, Ferraro & Hanauer (80) estimate the individual contributions of mechanisms through
which protected areas affected poverty in Costa Rica. Their results imply that two-thirds of the
observed reduction in poverty caused by protected areas came from tourism and the other third
from unmeasured mechanisms. The effects of protection on land use and on infrastructure had
no detectable effect on poverty, on average.

An alternative perspective on mechanisms views them as a means to estimate a causal effect
of D on Y without bias. Although mechanism-based impact evaluations are entirely absent in
the environmental literature, they are essentially just a recasting of what we described above. For
example, Ferraro & Hanauer’s (80) mechanism study assumes that, based on results from a previous
study (37), Costa Rica’s protected areas did reduce local poverty. They then estimated the relative
contributions of three potential mechanisms to this overall impact. An alternative interpretation
of their study would question whether the original 2010 study of protected areas’ effect on poverty
was free from hidden bias. Instead, one could appeal to theory to make the assumption that, were
such an effect to exist, it would come through the three mechanisms. The two-stage empirical
design would still be used, but the results would be interpreted differently. If one were willing
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EVIDENCE ABOUT THE VALUE OF EVIDENCE

Throughout this review, we implicitly assume that evidence about impacts is important for improving environmental

programs. Yet there is little evidence to support this assumption. Scholars and practitioners can better understand

how evidence about impacts, and the ways it is communicated, ultimately affects environmental and social outcomes

by applying the same designs used to generate evidence about environmental program impacts (see Figure 1).

to assume that the three mechanisms completely captured all possible mechanisms, then the sum
of the mechanism effects would equal the ATT (if the set of mechanisms were not exhaustive,
the sum would equal only a fraction of the ATT). In other words, one can either assume that
D affects Y, and then estimate the effects of different components of M, or one can assume that
the components of M are known, and then use that assumption to estimate the effect of D on Y.
As with all causal inference, nothing can be achieved without committing to a set of untestable
assumptions.

CONCLUSIONS

We have no shortage of good ideas to solve environmental problems, but we do have a glaring
shortage of evidence to support these ideas. To generate evidence, we must deliberately design
environmental programs with the aim of estimating their impacts and use appropriate methods
to understand cause and effect from the available data. These two actions are the hallmarks of
evidence-based policy making. Unfortunately, they are still rare in environmental science and
policy. As a result, we have myriad publications filled with data on the status and trends of our
biosphere but surprisingly little evidence on the effects of our policies that aim to change the status
and trends (see the sidebar on “Evidence About the Value of Evidence”).

Producing high-quality evidence will require much more than the application of sophisticated
statistical methods. Methods, no matter how sophisticated, cannot substitute for appropriate em-
pirical designs. A focus on design means precisely describing the causal effect to be estimated, the
way in which rival explanations will be eliminated, and the untestable assumptions that will be
called upon to make causal inferences. Strong, elaborate theories and field knowledge are required
to identify appropriate empirical designs, to help identify and eliminate rival explanations, and to
consider the implications of potential hidden biases.

A focus on design also implies collecting different (not more) data. Scholars and practition-
ers invest much of their time and money measuring observable outcomes in myriad ways, but
they fail to collect data that helps estimate counterfactual outcomes. Without credible estimates

SYSTEMATIC REVIEWS AND META ANALYSES

As the evidence from credible impact evaluations grows, systematic reviews can be used to synthesize and com-

municate what is known about the effects of a particular program or class of programs (81). Systematic reviews
are different from classic literature reviews in that systematic reviews have clear rules for deciding which studies
to include and how much weight (credibility) to assign to each study. The Collaboration for Environmental Ev-

idence (http://www.environmentalevidence.org) and the new journal Environmental Evidence are dedicated to

encouraging wider use of systematic reviews in the environmental domain.
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of, or bounds on, counterfactual outcomes, there can be no evidence about impacts. In other
fields with stronger evidence bases (e.g., medicine, labor policy, public health, and, more re-
cently, education), scholars and practitioners have developed partnerships that generate relevant
data and use credible designs to analyze the data. The environmental community needs to do
the same.

Rigorous impact estimates may not be possible for many environmental programs and projects.
Scholars and practitioners must collaborate to identify programs where high-quality evaluations
are feasible and likely to generate knowledge that benefits other contexts. Nevertheless, if the
community of environmental scientists and practitioners continues to believe that money spent
measuring impact is money not available for solving problems, it will ensure that we remain unable
to distinguish our successes from our failures, and thus unable to make progress.

SUMMARY POINTS

1. The quality of any impact evaluation, regardless of method or data, is a function of how
well it identifies and eliminates rival explanations for what is observed.

2. Identifying and eliminating rival explanations requires a solid understanding of selection.
Selection refers to the process by which some units come to be exposed to the program
and others do not. Without a credible explanation of selection, credible causal inferences
are not possible.

3. High-quality impact evaluations

®  acknowledge that not all rival explanations can be eliminated, and explore the impli-
cations of these rival explanations for our understanding of impacts;

®  emphasize design over methods;

B clarify the assumptions required for causal inferences and then interrogate these
assumptions with theory and data;

B require elaborate theories and deep field knowledge; and
B focus on finding credible ways to estimate counterfactual outcomes.

4. Attempts to estimate the heterogeneity of impacts, and the mechanisms through which
impacts arise, require even more attention to theory and design—and warrant even
more skepticism—than is required and warranted by estimates of average unconditional
impacts.
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