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RMarkdown tutorial on the methods can also be found on our Zenodo release and as a 8 

Supplemental Data File with this publication.  9 

Table of Contents 10 

Supplemental Methods ................................................................................................................. 3 11 

S1. Glossary of Terms ................................................................................................................... 3 12 

S2. Directed Acyclic Causal Graph (Figure 1B) ........................................................................ 7 13 

S2a. Comparison to path diagrams and structural equation models ......................................... 7 14 

S3. Supplementary Methods: Data Description ......................................................................... 8 15 

S3a. Measuring Biodiversity and Productivity ........................................................................... 9 16 

S3b. Data transformations ........................................................................................................ 10 17 

S4. Supplementary Methods: Main Design Estimator ............................................................ 13 18 

S4a. Review of Main Design from Methods section ................................................................. 13 19 

S4b. Estimation procedure and implementation ....................................................................... 15 20 

S4c. Brief comparison of our design and aims to other study designs and aims ...................... 15 21 

S5. Supplementary Methods: Extensions of the Main Design Estimator .............................. 16 22 

S5a. Species evenness ............................................................................................................... 17 23 

S5b. Functional form ................................................................................................................ 18 24 

S5c. Moderating effect of site-level species richness ................................................................ 19 25 

S5d. Moderating effect of site-level productivity ...................................................................... 20 26 

S6. Supplementary Methods: Robustness Checks to Assess Potential Threats to Internal 27 

Validity ......................................................................................................................................... 23 28 

S6a. Reverse causality: productivity causes species richness .................................................. 24 29 

https://github.com/LauraDee/NutNetCausalinf


SI-2 

 

S6a.i. Blocked mechanism design ............................................................................................. 25 30 

S6a.ii. Instrumental variable design ......................................................................................... 27 31 

S6bi. Dynamic panel designs .................................................................................................... 31 32 

S6b.ii. Design sensitivity to unobserved, plot-level confounding variables ............................. 37 33 

S7. Comparison of Main Design to Common Designs in Ecology .......................................... 41 34 

S8. Supplementary Methods: Heterogeneous Effects of Rare, Non-rare, and Non-native 35 

Species on Productivity............................................................................................................... 45 36 

S8a. Definitions and Measurement of groups in Figure 5 ........................................................ 47 37 

S8b. Statistical Analyses ........................................................................................................... 49 38 

S8c. Comparing the effect of species richness per group on productivity ................................ 50 39 

S8ci. Sensitivity Analyses for species with unknown origins .................................................... 51 40 

S8cii. Sensitivity analyses using relative frequency as a metric for rarity ............................... 52 41 

S8ciii. Sensitivity Analyses using different cut-offs for rare versus non-rare categories ......... 54 42 

S8d. Variation in each species group ....................................................................................... 55 43 

Supplementary Discussion ......................................................................................................... 58 44 

S9. Nine Frequently Asked Questions (FAQ) about Dee et al. ............................................... 58 45 

S10. Supplementary References ................................................................................................ 76 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 



SI-3 

 

Supplemental Methods  59 

S1. Glossary of Terms  60 

     We provide brief definitions of terms, and we organize the terms logically rather than 61 

alphabetically. For more details and background reading, see e.g., (1–7).  62 

Counterfactual (contrary to fact): In the definition of a causal effect, a plot is assumed to have a 63 

potential productivity outcome under each potential richness level; e.g., 𝑃𝑖(𝑅′′) is the potential 64 

productivity outcome when 𝑅 = 𝑅′′ and 𝑃(𝑅𝑖
′) is the potential productivity outcome when 𝑅 =65 

 𝑅′ (𝑅′ ≠  𝑅′′). But at any point in time, only one of those richness levels, and thus one of those 66 

productivity values, will be observed. The other values are counterfactual values – i.e., the 67 

productivity values that would have been observed had we instead observed the plot under the 68 

other possible richness levels.  69 

Treatment: Causal variables, like R, are often labeled “treatment variables” whether they are 70 

manipulated by an experimenter or by nature. A change from one value to another is often 71 

labeled a “treatment.” See (6–8). 72 

Average Treatment Effect (ATE): The ATE of biodiversity on productivity in plot i in year t is 73 

defined as E[𝑃𝑖𝑡(𝑅′′) − 𝑃𝑖𝑡(𝑅′)], where E[𝑃𝑖𝑡(𝑅′′)] is the expected productivity in plot i in year t 74 

when richness has the value 𝑅 = 𝑅′′ and E[𝑃𝑖𝑡(𝑅′)] is the expected productivity in plot i in year t 75 

when richness has the value 𝑅 = 𝑅′ (𝑅′ ≠  𝑅′′). The ATE is the average (or expected) causal 76 

effect of R on P for a randomly selected plot from the study population when biodiversity goes 77 

from 𝑅′ to 𝑅′′. 78 

Directed Acyclic Causal Graph (DAG): A DAG is a visualization of qualitative causal 79 

assumptions on which one relies for making causal claims from observable data (9). See Section 80 

S2 for more information and the relationship between a DAG and a “path diagram.”  81 

Internal Validity: The extent to which a study design allows one to infer a causal relationship 82 

from a correlation by ruling out rival explanations. For instance, are the changes in the 83 

independent variable, X, causing a change in the dependent variable, Y, or can those changes in Y 84 

be attributed to other causes? 85 
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External Validity: The extent to which inferences can be generalized (e.g., across sites, time 86 

periods, contexts, or scales).  87 

Construct validity: The extent to which an experimental treatment or statistical estimate matches 88 

the phenomenon it intends to measure (10, 11) or the theory it intends to test. 89 

Confounding Variables (or “confounders”): The term “confounding variable” describes 90 

variables that are systematically correlated with the causal variable (e.g., biodiversity) and the 91 

outcome variable (e.g., productivity), and thus can mask or mimic a causal effect. Confounding 92 

variables are a potential source of bias in a study design. 93 

Bias and Hidden Bias: An estimator is a rule or procedure for calculating an estimate of a causal 94 

effect based on observed data. Bias is a property of an estimator: it captures the difference 95 

between the estimator’s expected value and the true value of the causal effect being estimated 96 

(12). The phrase “hidden bias” (also called “unobserved heterogeneity”) is often used to describe 97 

the potential sources of bias in a study design (e.g., an omitted third variable that affects both 98 

biodiversity and productivity). Hidden bias is thus a rival explanation for detecting or failing to 99 

detect a correlation between a purported causal variable and its outcome using observable data 100 

(reviewed in (13)). The goal of causal analysis is to choose data and a design so that an actual 101 

causal effect would be visibly different from the most plausible hidden biases. Note: Sampling 102 

variability (“noise” or “chance”) is different from hidden bias. Sampling variability is a rival 103 

explanation for observed relationships between variables, but it is not a source of bias. Sampling 104 

variability declines with more data, whereas bias does not (14, 15). Sampling variability is 105 

reflected in variable I in Figure 1B, whereas bias comes from variable U. 106 

“Selection on Observables” Assumption: Informally, this assumption implies that confounding 107 

variables that could introduce bias are known and observable to the researcher, so that statistical 108 

bias can be eliminated (controlled, blocked) by conditioning strategies, such as regression, 109 

matching or stratification methods. To read more, see (1). 110 

Fixed Effect: Our use of the term “fixed effect” is drawn from the econometrics literature, where 111 

it refers to the effect of a time-invariant attribute of the system (12); e.g., a plot-level fixed effect 112 

is an attribute of the plot that is assumed to not change over the study period, such as topography 113 
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or historical patterns of land use. This use of the term “fixed effect” differs from how the term is 114 

typically used in ecology, where the term often refers to the coefficient estimates of explanatory 115 

variables in mixed (multi-level) modeling (e.g., (16)). Further confusing matters, the “random 116 

effects” components of a mixed effects model, which describe categorical variables that are 117 

assumed to be drawn from a normal distribution with zero mean, are often used to accomplish 118 

the same goal as the “fixed effects” that we apply here (e.g. to remove spurious plot-level 119 

effects). However, unlike “random effects,” econometric fixed effects are not constrained to be 120 

drawn from any predefined distribution. They are assumed to be fixed and estimable rather than 121 

assumed to have a distribution (i.e., they are not part of the error term, as random effects are 122 

assumed to be in multi-level modeling). Operationally, fixed effects in econometrics are simply 123 

regression parameters describing categorical or dummy variables per study unit (e.g., in 124 

experiments, a categorical fixed effect parameter per plot is often fit to control for differences 125 

among plots that are not associated with the experimental treatment). Although this fixed-effect 126 

estimation approach comes at the cost of reduced statistical power, it avoids the potential bias 127 

that can arise when controlling for time-invariant variables using random effects (to read more, 128 

see (3)). The use of random effects requires the assumption that the random effect is uncorrelated 129 

with all of the covariates in the model (17). In an observational data set with any sort of 130 

environmental gradient, that assumption is strong and not likely satisfied. 131 

Mechanism: A mechanism is a variable that lies on the causal path between two other variables 132 

and mediates the causal effect of one of those variables on the other (18); shown as “M” in 133 

Figure 1 B (right panel). A mechanism can be viewed as an intermediate outcome of a causal 134 

variable; e.g., an increase in plot productivity causes a decrease in plot biodiversity by increasing 135 

the amount of shading in the plot – shading is the mechanism through which a change in 136 

productivity can cause a change in biodiversity.  137 

Moderator: A moderator is a variable that lies off the causal path between two other variables 138 

but moderates the magnitude of a causal effect. A moderator is a source of heterogenous causal 139 

effects (18); for instance, the degree to which biodiversity affects productivity may depend on 140 

weather (e.g., precipitation or temperature) – weather can moderate the causal effect of 141 

biodiversity on productivity, but the change in biodiversity does not change weather conditions. 142 
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Heterogeneous Treatment: This concept goes by many names in the causal inference literature, 143 

including “multiple versions of the treatment”, “treatment variation,” “hidden versions”, 144 

“heterogeneous treatments,” and “hidden treatments” (“hidden treatments” being used differently 145 

from how ecologists have used the phrase in the past (19)). This issue can be viewed as a 146 

challenge with construct validity: if you say that richness goes from 4 species to 8 species in plot 147 

A, and I say that richness goes from 4 species to 8 species in plot B, we need to assess if we are 148 

talking about the same change in the treatment variable. In this case, a richness change from 4 to 149 

8 species can involve many combinations in species identity, even in experiments manipulating a 150 

subset of all species in an ecosystem (e.g., are all four additional species native and not rare, or 151 

are 2 of those additional species rare and 2 non-native?).  The underlying idea is that, for a unit 152 

of observation (e.g., a plot), there ought to be one potential outcome for each treatment value 153 

(e.g., one potential productivity value for each richness value at a particular moment in time). If 154 

there is not, we have multiple versions of the same treatment. In this way, species composition is 155 

not a confounding variable, but a heterogenous treatment in the effect of richness on 156 

productivity. Note that this concept of heterogeneous treatments is different from “heterogeneous 157 

treatment effects,” which simply means that not every unit responds the same way to a change in 158 

the treatment variable (i.e., treatment effects are moderated by variables that differ across units in 159 

the study population). 160 

Instrumental variable: This term is defined in Figure 1B as variable Z, a variable that affects the 161 

treatment variable (in our study, “species richness”) but has no direct effect on the outcome 162 

variable (in our study, “aboveground biomass”) except through its effect on the treatment. In a 163 

randomized experiment, the instrumental variable is the randomization procedure. To read more, 164 

see (20–22) and for examples in ecology see (23, 24).  165 

Panel data: Panel data are longitudinal data comprising repeated measures taken from a sample 166 

of cases (e.g., plots, sites, regions). These data also called cross-sectional time series (25) or 167 

longitudinal multilevel data. See section S3 for more detail. 168 

Cross-sectional data: Data without repeated measures taken from a sample. Instead, one measure 169 

is taken from each unit of analysis (e.g., plot). For example, when using cross-sectional data, 170 

analyses of the effect of biodiversity on productivity have only one observation per plot.  171 
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Errors versus residuals: The error term in a regression model represents how the observations 172 

differ from the true population. It is an unobservable and part of the true data generating process. 173 

In contrast, residuals are an estimate of the unobservable error term, as the difference between 174 

the regression line (predicted value) and the observed data points from the sample population. 175 

Residuals cannot be used to assess potential bias in an estimation procedure, and thus this 176 

distinction is important in our discussions of statistical bias.  177 

S2. Directed Acyclic Causal Graph (Figure 1B) 178 

Figure 1B (right panel) is known as a directed acyclic causal graph (DAG) and is a 179 

visualization of qualitative causal assumptions (5, 9, 26–28). A DAG encodes knowledge and 180 

beliefs about how a system works. The graphical relations depicted in the DAG encode causal 181 

claims – not just representations of associations. A directed edge (e.g., R → P) depicts a claim 182 

about the results of many hypothetical experiments, whereby if every other variable represented 183 

in the graph is held fixed, R and P will covary if R if manipulated, but not if P is manipulated 184 

(note, time is implicit in the DAG, and a DAG assumes that one can isolate the effect of R on P 185 

but does not imply that P can never affect R; another DAG may represent the reverse direction, P 186 

→ R).  187 

One key benefit of a DAG is that it makes transparent the assumptions on which one relies 188 

for making causal claims from observable data. A DAG therefore allows the researcher and the 189 

reader to better judge the credibility of the causal claims from a specific research design. Another 190 

way to view this benefit is that a causal graph helps identify the sources of variation in a causal 191 

variable and in its outcome, thereby emphasizing potential sources of bias that must be addressed 192 

in a research design and pointing to designs that can address these sources of bias (1).  193 

S2a. Comparison to path diagrams and structural equation models  194 

A DAG is like a “path diagram,” which may be more familiar to ecologists and are often 195 

used in structural equation modeling (29, 30). Although not all path diagrams are DAGs, a DAG 196 

can be interpreted as a non-parametric structural equation model (SEM) (31) with no cycles (no 197 

double-headed arrows). In other words, an SEM can be a DAG, but an SEM could also contain 198 

both cyclic and directed cycles (not a DAG).  199 

In practice, however, SEMs, when used for causal claims, rely on conditioning on observable 200 

confounding characteristics to eliminate non-causal dependencies between two variables (‘the 201 
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selection on observables assumption’ – see S1 Glossary). However, DAGs emphasize also 202 

making transparent assumptions about unobservable confounding variables. In contrast to the 203 

common practice of SEMs in ecology, our design can eliminate unobserved confounders (section 204 

S5). Nevertheless, SEMs, as typically implemented in ecology, have advantages over our design 205 

in cases where a researcher believes that all important confounders can be observed and 206 

controlled within the SEM: in those cases, SEMs can be more efficient (i.e., higher statistical 207 

power) and they expand the scope of analyses that can be performed with a single data set and 208 

estimation strategy. 209 

 210 

S3. Supplementary Methods: Data Description  211 

     We analyze panel data from grasslands around the world in the Nutrient Network (32, 33), 212 

which includes mesic grasslands and prairies, savanna, desert grasslands, montane meadows, old 213 

fields, and alpine tundra. We use data from 43 sites with unmanipulated plots with at least 5 214 

years of data in the period 2007-2017 (see Table S1). Unmanipulated plots are control plots in 215 

the nutrient addition experiments of the Network, meaning they receive no additional nutrients. 216 

Unprocessed data versions were ‘full-cover-09-April-2018.csv', and ‘comb-by-plot-clim-soil-217 

diversity-09-Apr-2018.csv' from the Nutrient Network. All R scripts to process data and create 218 

derived data is available at the project page (DOI/10.5281/zenodo.7675340).  219 

 220 

Table S1. Information on unmanipulated control plots from the Nutrient Network. The table 221 

shows the number of plots with data by year and site. All plots in the analysis have at least 5 222 

years of data between 2007-2017. The dataset includes sites from 11 countries and 5 continents 223 

(North America, Australia, Europe, South America, and Africa). 224 

 225 

Site Name  2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Bogong    -     -  3 3 3 3 3 3 3 3 3 

Boulder South Campus    -  2 2 2 2 2 2    -     -     -     -  

Bunchgrass (Andrews LTER) 3 3 2 3 3 3 3 3 3 3 3 

Burrawan    -  3 3 3 3 3 3 3 3    -     -  

Cedar Creek LTER 5 5 5 5 5 5 5 5 5 5 5 

Cedar Point Biological Station 6 6 6 6 6 6 6 6 6 6    -  

CEREEP - Ecotron IDF    -     -     -     -     -  3 3 3 3 3 3 

Chichaqua Bottoms    -     -  6 6 6 6 6 6 6 6    -  

Companhia das Lezirias    -     -     -     -     -  3 3 3 3 3    -  
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Cowichan 3 3 3 3 3 3 3 3 3    -     -  

Doane College Spring Creek Prairie    -     -     -     -     -  2 2 2 2 2 2 

Duke Forest 3 3 3 3 3    -     -     -     -     -     -  

Elliott Chaparral    -     -  3 3 3 3 3 2 3 3    -  

Fruebuel    -  3 3 3 3 3 3    -  3    -     -  

Hall's Prairie 3 3 3 3 3 3 3 3    -     -     -  

Hart Mountain 3 3 3 3 3 3    -     -     -     -     -  

Heronsbrook (Silwood Park)    -  3 3 3 3 3    -     -     -     -     -  

Hopland REC 3 3 3 3 3 3 3 3 3 3 3 

Kinypanial    -     -  3 3 3 3 3 3 3    -     -  

Koffler Scientific Reserve, Joker's Hill    -     -     -  9 9 9 9 9 9 9 9 

Konza LTER 3 3 3 3 3 3    -  3 3    -     -  

Lancaster    -  3 3 3 3    -     -  3 3 3    -  

Lookout (Andrews LTER) 3 2 3 3 3 3 3 3 3 3 3 

Mar Chiquita    -     -     -     -  3 3 3 3 3 3    -  

Mclaughlin UCNRS 3 3 3 3 3 3 3 3 3 3 3 

Mt. Caroline    -  4 4 4 4 4 4 4 4 4    -  

Papenburg 1 1 1 1 1 1 1    -     -     -     -  

Rookery (Silwood Park)    -  3 3 3 3 3    -     -     -     -     -  

Sagehen Creek UCNRS 3 3 3 3 3 3 3    -     -     -     -  

Saline Experimental Range    -  3 3 3 3 3 3 3 3    -     -  

Savannah River 2 2 2 2 2 2    -     -     -     -     -  

Sedgwick Reserve UCNRS 6 6 6 6 6 6 6 6 6 6 6 

Serengeti    -  3 3 3 3 3    -     -     -     -     -  

Sevilleta LTER 5 5 5 5 5 5 5 5    -     -     -  

Sheep Experimental Station 4 4 4 4 4 4    -     -     -  4    -  

Shortgrass Steppe LTER 3 3 3 3 3 3 3 3 3 3    -  

Sierra Foothills REC 3 5 5 5 5 5 5 5 5 5 5 

Smith Prairie 3 3 3 3 3 3    -     -  3    -     -  

Spindletop 3 3 3 3 3 3 3 3 3 3 3 

Temple 4 4 4 4 4 4 4 4 4 4    -  

Trelease    -     -  3 3 3 3 3    -     -     -     -  

Ukulinga    -     -  6 6 6 6 6 6 6 6    -  

Val Mustair    -  3 3 3 3 3 3 3 3 3    -  

 226 

 227 

S3a. Measuring Biodiversity and Productivity 228 
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To measure productivity, we use plant above-ground live mass (biomass) as in Figure S1.  229 

Biomass production supports many ecosystem processes and services and this measure of 230 

productivity has been widely used in addressing the relationship between diversity and 231 

productivity with observational data (e.g., (34–36)) and in many grassland experiments 232 

(reviewed in (37–39)). For herbaceous vegetation, above-ground live biomass provides a 233 

reasonable estimate of primary productivity (40).  234 

Live aboveground biomass is measured in the Nutrient Network dataset with the following 235 

procedure. In each 5m x 5m unmanipulated control plot, a permanently marked, randomly 236 

located, 1m x 1m subplot is sampled annually at peak biomass for species composition. Visual 237 

cover estimates are made to the nearest 1% for every species contained within (or over-hanging) 238 

the subplot and used to calculate species diversity metrics (richness, evenness). Biomass samples 239 

are collected from two 1 m x 0.1 m strips (totaling 0.2 m2) located adjacent to the 1m2 cover 240 

subplot. All vegetation from plants rooted within these strips is clipped at ground level. The 241 

location of the biomass plots changes yearly to avoid repeat sampling previously clipped areas. 242 

Biomass is dried at 60oC to constant mass and weighed to the nearest 0.01g. Multiplying weights 243 

by five generates a gram per square meter value for productivity. 244 

To make our study comparable with previous studies, we measure biodiversity as species 245 

richness, the number of species in a plot in each year (Figures S1 and S2). We also consider 246 

(Table S2) analyses that include species evenness, measured as the degree of similarity in 247 

abundance between species within a community (41), and analyses that measure diversity with 248 

Simpson’s Diversity. We calculate Simpson diversity as the inverse Simpson index: 1/D where D 249 

= sum(pi
2) and pi is the proportional index of each species i in a plot. The evenness variable is 250 

H/log(S) where H is the Shannon Index and S is the number of species in a plot. H = - sum(pi 251 

* ln(pi)). We calculate each metric using all the vegan package in R (42).  252 

In this dataset, we started with 1291 potential plot-year observations but had to drop 2 plot-253 

year observations because of missing richness values and another 58 observations because of 254 

missing productivity values.  255 

S3b. Data transformations 256 

Prior to estimating the effect of diversity on productivity, we transform our productivity 257 

variable (live biomass) and our diversity variables (richness, evenness, Simpson’s index) by 258 

taking the natural logarithm of each plot-level measure. This transformation has several 259 
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advantages, which are all related in a statistical sense. First, both productivity and richness are 260 

strictly positive variables that exhibit right-skewed distributions (see Figure S1). Transforming 261 

by the natural logarithm reduces the skew of these variables, improving statistical efficiency (i.e., 262 

improves the precision of our estimates). Second, in an ecological sense, it is reasonable to 263 

assume that going from 2 to 4 species will on average have a bigger effect on productivity than 264 

going from 18 to 20 species but may have a similar proportional effect on average as a change 265 

from 10 to 20 species would have. In other words, the natural logarithm transformation makes 266 

sense in situations when it is better to compare relative changes rather than absolute changes. In 267 

other words, instead of assuming that P increases as a constant function of R, we assume that P  268 

 269 

 270 

Figure S1. Plot-level (a & b) and site-level (c & d) species richness and productivity (above-271 

ground live mass) between 2007-2017. (a) shows the levels of richness and productivity in all 272 

plots and (b) shows the log of richness and productivity in all plots. For comparison, (c) shows 273 

the average levels of richness and productivity across the 43 sites (see Table S1) and (d) the log 274 

of richness and productivity across the same sites.  275 

 276 
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increases as a relative function to the current level of P as a function of R. Another way to say 277 

the same thing is that in a graph with richness on the horizontal axis and productivity on vertical 278 

axis, a straight line will not the best description of the relationship. Third, the coefficient on 279 

richness in our log-log specification has a well-define interpretation, which is a valuable trait; for 280 

most readers, a single coefficient is more accessible and easier to evaluate than a non-linear 281 

surface. In this SI (section S6), we also present the estimated effects of richness on productivity 282 

in levels (i.e., no transformation), including quadratic and cubic specifications that permit the 283 

estimated relationship to be non-linear. 284 

 285 

Figure S2. Plot-level changes in species richness through time. This figure shows the change 286 

in plot-level species richness from year to year at each study site from between 2007-2017. All 287 

plots in the analysis have at least 5 years of data.  288 

 289 
 290 

 291 
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S4. Supplementary Methods: Main Design Estimator 292 

S4a. Review of Main Design from Methods section  293 

We present the details on the Main Design in the main text Methods section. Here, we elaborate 294 

on the estimation procedure used to implement the regression model for the Main Design.  In our 295 

study design, an observation comes from a plot p located within a site s in a year t. Recall that, to 296 

eliminate the confounding effects of time-invariant plot attributes (𝛿𝑝𝑠) and time-varying site 297 

attributes (𝜇𝑠𝑡), we estimate an equation of the following form: 298 

 299 

ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 + 𝛿𝑝𝑠 + 𝜇𝑠𝑡 +  𝜀𝑝𝑠𝑡       (S1) 300 

Given that we have a ln-ln specification, 𝛽 can be interpreted as an elasticity: the expected 301 

percent change in productivity given a one percent change in richness. In the economics 302 

literature, the time-invariant plot attributes (𝛿𝑝𝑠) would be called “plot-level fixed effects.” Note 303 

that fixed effects have a different meaning in economics than in ecology (see S1 Glossary). In 304 

economics, including 𝛿𝑝𝑠 is said to control for “unobserved heterogeneity” across plots that can 305 

be a potential source of bias. Note that 𝛿𝑝𝑠 is not part of the error term, as it would be in mixed 306 

(multi-level) models (see Section S7). Rather, it is a parameter to be estimated, just like 𝛽 (i.e., 𝛽 307 

and 𝛿𝑝𝑠 are assumed to be fixed and estimable, rather than assumed to follow a distribution). 308 

Time-invariant site attributes are not explicitly included in the equation because they are 309 

subsumed into the time-invariant plot attributes (i.e., plots are nested within sites and so fixed 310 

site attributes are controlled via fixed plot attributes).  311 

The time-varying site attributes (𝜇𝑠𝑡) are modeled in a fully flexible way that allows a year-312 

specific effect for each site (in the estimation, an indicator for each year is interacted with an 313 

indicator for each site). Explicitly estimating 𝜇𝑠𝑡  flexibly controls for confounding variation due 314 

to conditions at a site that vary from year to year, namely weather (e.g., temperature, 315 

precipitation), drought events, grazing, surrounding management, or other site-level attributes 316 

that change through time. In other words, this variable captures all year-specific conditions 317 

experienced by every plot at a given site. 318 

The term 𝜀𝑝𝑠𝑡  is a time-varying random error term at the plot level, assumed to have mean 319 

zero and no correlation with ln Richness, i.e., it corresponds to 𝐼𝑝𝑠𝑡  in Figure 1B. Errors at a 320 

given plot (𝜀𝑝𝑠𝑡) may be serially correlated (i.e., temporally dependent even after conditioning on 321 
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richness and site-by-year effects), and thus we cluster the standard errors at the plot level (43). 322 

Our clustered estimation of the variance allows for arbitrary serial correlation within each plot, 323 

as well as heteroskedasticity across plots (17, 44)). See our project page for code. Errors at a 324 

given site may also be correlated (even after conditioning on site-by-year effects) and thus, as a 325 

robustness check, we also estimate standard errors clustered at the site level (Table S2). 326 

To sum up our design, we are asserting that, after controlling for time-invariant plot attributes 327 

that are correlated with richness and productivity, and time-varying site attributes that are 328 

correlated with richness and productivity, the remaining variation in richness in a plot is “as if 329 

randomly assigned,” independently across time. In other words, the remaining variation in 330 

richness is driven by variables that have no link to productivity other than through their effect on 331 

richness (i.e., Zpst in Fig. 1). If our assumption is correct, we can give a causal interpretation to 332 

the estimate of 𝛽. In section S7, we describe how we explore the sensitivity of our causal 333 

interpretation to violations of this assumption. The estimated effect of richness on productivity is 334 

reported in Figure 2 and Table S2.  335 

As we noted in the Methods section of the main text, we seek to estimate the average causal 336 

response of an incremental change in 𝑅 across all plots (i.e., the average effect across all possible 337 

one-unit changes). Recently, scholars have identified a potential form of misspecification bias 338 

that may arise when using models like Equation (S1) to estimate this average causal response 339 

when treatments are multi-valued and time-varying and the average causal response is 340 

heterogeneous across time or treatment values (45). Specifically, the regression estimator applies 341 

weights to all of the richness contrasts and year contrasts in the data and these weights can, in 342 

some rare cases, be negative. In the presence of heterogeneous average causal responses, such 343 

weights could overweight or underweight specific contrasts in a way that would create bias. This 344 

bias can arise when (1) the average causal response wanes or matures over the panel when 345 

treatment values change and remain at their new value across years (i.e., when they move to an 346 

absorbing state); and (2) the distribution of treatment values is highly non-normal and the 347 

average causal responses at extreme values of richness differ from the average causal responses 348 

for values in the middle of the distribution of richness values. There is no theoretical basis for the 349 

first source and the richness values in our panel data are well approximated by a normal 350 

distribution. Thus, we do not believe that this form of specification bias is a potential problem in 351 

our Main Design. 352 
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S4b. Estimation procedure and implementation 353 

To ensure transparent, reproducible results among a wide range of scientists, we estimated 354 

Equation (S1) in two software programs and by multiple coauthors for reproducibility. We used 355 

the “reghdfe” command in STATA (v.16) (the “xtreg, fe” command yields the same estimates) 356 

and the “feols” command in R in the fixest package (v. 0.8.2). While there are other packages in 357 

R to execute this estimator, e.g., using the  “felm” command in “lfe” (v 2.8-5) (46), we opt to use 358 

“fixest” because the standard error estimation matches STATA and yields a more conservative 359 

estimate based on the finite sample degrees of freedom correction for multi-way clusters. There 360 

is no consensus on the “correct” finite sample degrees of freedom correction for these models, so 361 

we opted for the more conservative option that results in larger standard errors.  362 

S4c. Brief comparison of our design and aims to other study designs and aims 363 

     In our Main Design, our notion of causality and our approach differ from predictive (best-364 

fitting) modeling approaches that use time-series data, such as convergent cross mapping designs 365 

(47). Our “intervention-based” notion of causality (9, 48, 49) is what experimentalists have in 366 

mind when they make causal claims (50). Furthermore, our model is not intended to be the best 367 

predictive model of productivity;1 i.e., the best model for predicting the level of productivity in 368 

plots outside of our sample (51). In fact, the best predictive model of productivity may not even 369 

include richness as a variable. However, we are not interested in out-of-sample prediction of 370 

plot-level productivity. In contrast, our goal is to infer the causal effect of richness on 371 

productivity. But if one wanted to do such prediction, our design would pose challenges because 372 

our estimates are conditional on the sample; the plot-level fixed effects are not assumed to have a 373 

distribution (like they would in a mixed model), but rather are instead treated as fixed and 374 

estimable.  375 

     The approach in our Main Design also differs from a mixed-effect modeling approach more 376 

common in Ecology (16). While ecologists who are familiar with multi-level modeling may 377 

wonder why, given our data are comprised of plots nested within sites and annual observations 378 

nested within plots, we do not use this multi-level modeling approach as our Main Design. We 379 

opt to use our design, rather than a mixed effect model, because our approach makes weaker and 380 

 
1 This post by Paul Allison (2014) explains key differences in evaluating multivariate regression models for the aim 

of prediction versus causal inference: https://statisticalhorizons.com/prediction-vs-causation-in-regression-analysis 
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more plausible assumptions for our data context and question, compared to a mixed effect model. 381 

A full explanation is beyond the scope of this paper, but the main reason has two parts, which is 382 

laid out in more detail in Section S7. First, without more variable transformations, the multi-level 383 

modeling approach does not easily lend itself to controlling for as many unobservable sources of 384 

confounding as can be done in our estimator. Second, clustering our standard errors at the plot 385 

provides the same benefits that multi-level modeling does when estimating the variance-386 

covariance matrix in the presence of intra-site correlations among plots (44). For more detail and 387 

discussion, see Section S7. Comparison of Main Design to Common Design in Ecology (a.k.a., 388 

multi-level modeling, hierarchical modeling, random effects modeling, mixed effects modeling, 389 

or variance components modeling).  390 

 391 

Table S2. Supplementary results on different variations of the main design. Column (1) 392 

presents the results presented in the main text for the Main Design. The negative effect of ln of 393 

species richness on ln of productivity holds when clustering standard errors at the site level 394 

(column 2), when controlling for species evenness (column 3 & 6), and when using other 395 

measures of biodiversity (Simpson’s Diversity – column 4) as well as the lagged effect of species 396 

richness in the prior year (ln SpeciesRichnesst-1) (columns 5 & 6). The estimated effect in column 397 

(1) is plotted in Figure 2. 398 
===================================================================================================== 399 
  Model with ln(live biomass) as outcome: 400 
                                (1)            (2)                        (3)               (4)                              (5)                                          (6)             401 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 402 
ln(SR)                -0.2418 ***             -0.2418 **              -0.2237***                                            -0.2185**                           -0.2057** 403 
                              (0.0854)                (0.0892)                  (0.0851)                                                (0.0939)                          (0.0948) 404 
                [-0.40902; -0.0743]     [-0.4165; -0.0670]   [-0.3905; -0.0568]      [-0.4024; -0.0345]   [-0.3914; -0.0199]   405 
ihs(Evenness)                                                     -0.1864                                                                                    -0.1450 406 
                                                              (0.2122)                                                              (0.2387) 407 
                       [-0.6022; 0.2294]                                   [-0.6128; 0.3228] 408 
ln(Simpson)                                                                                     -0.1701 **               409 
                                                                                               (0.0679)        410 
                      [-0.3031; -0.0370] 411 
ln(lagged SRt-1)                  -0.0146     -0.0096 412 
                           (0.0905)                          (0.0903) 413 
                                                                                                                                            [-0.1919; 0.1627]                        [-0.1866; 0.1675] 414 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 415 
Num. obs.                1231                     1231              1231                             1231                     1093                              1093               416 
Num. plots     151                 151 151  151             151  151 417 
R^2 (full model)             0.87                      0.87     0.87                              0.87                       0.87                               0.87                418 
======================================================================================================= 419 
Signif. Codes: ***: 0.01, **: 0.05, *:0.1.  95% CI are shown in bracket. 420 
Robust Standard errors in parentheses, clustered at plot level in column 1 and clustered at site level in column 2.  421 

 422 

 423 

S5. Supplementary Methods: Extensions of the Main Design Estimator 424 
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In this section, we present supplementary results, including variations in the specification of 425 

our Main Design shown in Equation S1 and Equation 2 in the main text.  426 

S5a. Species evenness 427 

The negative estimated effect of richness on productivity (Figure 2) could reflect changes in 428 

evenness, which may covary with changes in richness. In our sample, species richness varies a 429 

lot over time within plots, but evenness does not (Figure S3). Thus, we do not suspect that failing 430 

to include species evenness in Equation (S1) is a source of bias, but we nevertheless re-estimate 431 

the equation after adding a measure of evenness. We transform the evenness variable with an 432 

inverse hyperbolic sine (IHS) transformation, which has an effect similar to the natural logarithm 433 

transformation but, unlike the natural logarithm transformation, is appropriate for variables, like 434 

changes in evenness, that have many zero values (the natural logarithm of zero is undefined; 435 

(52)). 436 

After accounting for evenness, the negative relationship between richness and productivity 437 

remains unchanged (Table S2), implying that the estimated effect of species richness in the first 438 

column comes from changes in species richness rather than evenness. The estimated coefficient 439 

on evenness is imprecisely estimated (Table S2) (i.e., large standard errors). Thus, anyone 440 

interested in estimating its causal effect on productivity would not be able to draw precise 441 

inferences from our data. This imprecision highlights that the strength of our design – its ability 442 

to leverage change in diversity over time within plots to isolate the causal effect of diversity – 443 

can be a weakness when the variable of interest does not change much over time within plots. If 444 

this lack of temporal variation is common in many non-experimental contexts, experimental 445 

designs varying evenness (e.g. (53)) may be the only way to obtain precise estimates of the role 446 

of evenness on productivity or other ecosystem functions. 447 

 448 
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 449 

Figure S3. Year-to-year variation in species evenness per plot for the dataset described in Table 450 

S1. 451 

 452 

S5b. Functional form  453 

The effect of species richness on productivity could vary by the magnitude of the change in 454 

the number of species. To detect this non-linearity, we estimate a quadratic specification of our 455 

equation in which the variables are not log transformed (Table S3: ‘Quadratic’ column). We 456 

detect evidence that the negative effect of richness on productivity becomes smaller as richness 457 

increases, i.e., the coefficient on the non-squared term is negative and the coefficient on the 458 

squared term is positive. Species richness ranges from 1 to 37 species in our dataset, which 459 

determines the range over which there is a positive or negative effect. With the quadratic 460 

specification, we find that the estimated effect or richness on productivity only turns positive in 461 

plots over 31 species, which represents only 14 observations and 1.14% of the data (see Table S3 462 

– ‘Quadratic’ column). For completeness, we also present estimates with the linear specification 463 

and untransformed variables (level-level) and estimates with only productivity log-transformed 464 

(log-level) (Table S3). We also estimated a cubic specification, and the estimated cubic term was 465 

quantitatively and statistically indistinguishable from zero (see code on our project page, 466 

DOI/10.5281/zenodo.7675340). 467 

 468 

 469 
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Table S3. Estimates of the effect of species richness on productivity P under changes in 470 

model specification for the functional form of this relationship. The columns compare the  471 

estimates from main log-log model (in column 1) to estimates from models with (2) the ln of 472 

productivity P but untransformed richness (i.e., richness in levels), (3) untransformed richness 473 

and productivity P, and (4) untransformed richness and productivity P with a quadratic term for 474 

richness. Standard errors, clustered at plot level, are in parentheses. 95% CIs are in brackets. All 475 

models include plot and site-by-year fixed effects as in Equation (S1).  476 

==================================================================== 477 

                       (1) ln(P)             (2) ln(P)                (3) P                      (4) P (Quadratic)     478 

------------------------------------------------------------------------------------------------------------------- 479 

ln(Richness)           -0.2418***                                 480 

                               (0.0854) 481 

              [-0.4092, -0.0743]                                    482 

Richness                                      -0.0147*      -1.916                 -16.83** 483 

                                          (0.0080)                (2.919)        (6.623)   484 

                [-0.0304, 0.0009]         [-7.637, 3.805]        [-29.81, -3.850] 485 

Richness2                                                                  0.5602**  486 

                                                                            (0.2162) 487 

                                  [0.1364, 0.9840] 488 

--------------------------------------------------------------------------------------------------------------------- 489 

Num. obs.                  1231             1231         1231              1231 490 

Num. plots  151          151                          151                       151 491 

R^2 (full model)         0.867            0.865           0.83              0.83    492 

===================================================================== 493 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 494 

 495 

S5c. Moderating effect of site-level species richness  496 

We tested the hypothesis that site-level richness moderates the effect of plot level richness on 497 

productivity. This hypothesis is motivated by the observation that one potential reason for the 498 

observed negative effect of plot richness on plot-level productivity is that the “best performing” 499 

species enter a plot and win by becoming more productive (54) and thus causes a decline in 500 

richness to lead to an increase in productivity. This relies on having a large pool of species at a 501 

site that can colonize to take over during specific years.  502 

We found no evidence supporting the hypothesis that the effect of plot-level species richness 503 

on plot-level live biomass depended on the levels of the observed site richness across all years or 504 

per year, nor on the numbers of introduced and native species at the site level (Table S4). We 505 

recommend that future research could test this hypotheses using data that includes direct 506 

observation of dispersal patterns (e.g., (54)), which are not available for this dataset at present.  507 
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Table S4. No dependence of the plot-level species richness (SR) effect on site-level species 508 

richness (site SR) characteristics on productivity. All estimates are on a ln-ln scale. We 509 

consider several site-level species richness measures, including: site-level richness across all 510 

years (Site SR): count of all unique taxa ever observed across all plots in all years at that site), 511 

the site-level richness per year (Site SR per year): count of unique taxa observed across all plots 512 

at the site in that year), the count of all unique introduced taxa at the site (Site Introduced SR) 513 

and the count of all unique native taxa at the site (Site Native SR). Interactions are indicated by a 514 

“x.” If anything, we find evidence that controlling for site level richness variables makes the 515 

estimated effect of the log of plot species richness on log productivity more negative. To see 516 

95% confidence intervals as well, see the project page (TableS4_R_CI.tex). 517 

===================================================================== 518 

                                      Model: 519 

Total Site SR     Site Introduced SR    Site SR by year          Site Native SR 520 

--------------------------------------------------------------------------------------------------------------------- 521 

ln (SR)                               -0.4398 **            -0.2753**            -0.3834 *                -0.3184**      522 

                                        (0.2155)               (0.1197)               (0.1998)                 (0.1494)       523 

ln(SR) x Site SR                  0.0026                                                          524 

                                             (0.0027)                                                         525 

ln(SR) x Site Introduced SR                        0.0018                                            526 

                                                              (0.0061)                                           527 

ln(SR) x Site SR per year                                                        0.0041                      528 

                                                                                (0.0050)                       529 

ln(SR) x Site Native SR        0.0021      530 

(0.0031)       531 

--------------------------------------------------------------------------------------------------------------------- 532 

Num. obs.                  1231             1231        1231                      1231 533 

Num. plots  151          151                       151                              151 534 

R^2 (full model)         0.87              0.87          0.87                    0.87    535 

===================================================================== 536 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 537 
Robust Standard errors in parentheses (clustered at plot level). 538 

S5d. Moderating effect of site-level productivity  539 

     A recent study by Wang et al. (55) found that the effect of biodiversity on productivity was 540 

moderated by the average level of productivity at a site, meaning that effect of biodiversity on 541 

productivity differed between high versus low productivity sites. In response, we test whether 542 

our results are altered by considering site-level productivity as a moderator. We consider site-543 

level productivity in four ways: two using continuous variables and two using the cut-offs for 544 

high, medium, and low productivity classifications from Wang et al (55). Wang et al (55), 545 

however, used cross-sectional analyses to estimate this effect. Here, we can measure site-level 546 
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productivity in two ways: average over the entire time series (‘Average prod. per site’), and site-547 

level productivity per year (‘Average Prod per site & year’). In all calculations of site-level 548 

productivity, we include the average productivity for the unmanipulated (control) plots, but not 549 

the experimental plots at the Nutrient Network experimental sites.  550 

     We expand and estimate our main model in (equation S1) adding an interaction term between 551 

ln Richnesspst and Avg Productivity (Table S5). Next, Wang et al (55) categorize sites as high, 552 

medium, or low productivity in the 151 grids in HerbDivNet data based on mean productivity in 553 

a grid: low between 30.18-238.73 (g/m^2), medium between 239.67-409.69 (g/m^2), and high 554 

between  414.29-1382.42 (g/m^2). Our productivity, in terms of live aboveground biomass at the 555 

site average across years, ranged from 62.48 to 1124.27 g/m^2; whereas the average site-level 556 

productivity per year ranged from 5.372 to 1609 g/m^2. Thus, to be comparable to Wang et al 557 

(55), our groups were classified as: low below 239.67, high over 414.29, and the rest of sites as 558 

medium productivity. We adopt these cut-offs and rerun the models interacting the ln Richnesspst 559 

with the Productivity_Group (see Table S5 for details).  560 

Table S5. Estimating the moderating effect of site-level productivity on the effect of plot-561 

level species richness (SR) on productivity, using continuous measures of productivity. As 562 

moderators, we consider the average site-level productivity per year (column 1) and the average 563 

site-level productivity across years (column 2). Interactions with plot-level species richness per 564 

year are indicated by a “x.” To see 95% confidence intervals as well, see the project page 565 

(TableS5_R_CI.tex). All estimates are on a ln-ln scale. 566 

===================================================================== 567 

                                             Model: 568 

        (1)         (2) 569 

--------------------------------------------------------------------------------------------------------------------- 570 

ln(SR)                                              -0.3305 **                 -0.3532**             571 

                                       (0.1609)                         (0.1635)              572 

ln(SR) x Ave. Site Prod. Per Yr.           0.0003                                             573 

                                       (0.0004)                                             574 

ln(SR) x Ave. Site Prod.      0.0004               575 

                                                                                 (0.0004)              576 

--------------------------------------------------------------------------------------------------------------------- 577 

Num. obs.                  1231                  1231            578 

Num. plots  151              151                                         579 

R^2 (full model)         0.87                           0.87              580 

===================================================================== 581 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 582 
Robust Standard errors in parentheses (clustered at plot level). 583 
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     Across these analyses, we can detect no moderating effect of site-level productivity, based on 584 

estimated coefficients and their SEs in Table S5 and S6. See R code to reproduce analyses at the 585 

project page. 586 

Table S6. Estimating the moderating effect of site-level productivity on the effect of plot-587 

level species richness (SR) on productivity, using categorical groups of high, medium, low 588 

productivity based on Wang et al. We interact plot-level richness with each productivity group; 589 

interactions are indicated with an ‘x’ in the results table. Productivity groups were determined as 590 

follows. Wang et al (55) use a single year of data; to mirror this measure, we use an average 591 

productivity per site across years (column 2). In contrast to Wang et al (55), we also interact 592 

plot-level richness with an average productivity per site per year (column 1). To see 95% 593 

confidence intervals as well, see the project page (TableS6_R_CI.tex). All estimates are on a ln-594 

ln scale. 595 

===================================================================== 596 

`        (1)        (2) 597 

Average Prod. per site & year       Average Prod. per site 598 

--------------------------------------------------------------------------------------------------------------------- 599 

ln(SR)                                        -0.2090*                        -0.1946               600 

                                                        (0.1070)                         (0.1395)              601 

ln(SR)x ProdGroupMedium                   0.1075                                              602 

                                            (0.1155)                                             603 

ln(SR) x ProdGroupHigh                        -0.0718                                              604 

                                            (0.1740)                                             605 

ln(SR) x ProdGroup:WangCutoffsMedium                                     -0.1358               606 

                                                                              (0.1985)              607 

ln(SR) x ProdGroup:WangCutoffsHigh                                         0.0623               608 

                                                                              (0.2123)              609 

--------------------------------------------------------------------------------------------------------------------- 610 

Num. obs.                                 1214                              1231                 611 

R^2 (full model)                           0.77                              0.77               612 

Num. plots                     151                                151                 613 

===================================================================== 614 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 615 
Robust Standard errors in parentheses (clustered at plot level). 616 

 617 

 618 

 619 
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S6. Supplementary Methods: Robustness Checks to Assess Potential Threats 620 

to Internal Validity 621 

In our Main Design (Section S4), the key, untestable assumption for drawing a causal 622 

inference from our estimator is that, after controlling for time-invariant plot confounders and 623 

time-varying site confounders, the remaining variation in richness in a plot is “as if randomly 624 

assigned,” independently across time. In the main text (Figure 3), we consider potential 625 

violations of this assumption and the implications for our inferences. More specifically, we 626 

conduct a series of analyses that rely on alternative assumptions for causal inference. As noted in 627 

the main text, the results are consistent across all approaches. Here, we describe these 628 

approaches in more detail. 629 

First, we explore potential violations in our assumption that the effect we are estimating goes 630 

from richness to productivity, and not the other way around (in Section 6a). Because species 631 

richness and biomass measures are taken simultaneously each year, as they typically are in many 632 

ecological data sets, we cannot rely on temporal sequencing of the data to rule out reverse 633 

causality. To address this potential threat to causal inference in our design, and in the process 634 

also address potential bias from unobserved, time-varying plot attributes, we take two 635 

approaches: (a) we posit a mechanism through which productivity affects richness – i.e., shading 636 

(based on (56)) – and then block this mechanism and evaluate the change in our estimated effect 637 

of richness on productivity (Section 6a.i); and (b) as an alternative to our main estimator 638 

(Equation S1), we use an estimator that can estimate the effect of richness on biomass for a 639 

subsample of the observations for which we can more credibly argue that the direction of 640 

causality goes from richness to productivity (Section 6a.ii).  641 

After assessing the potential threat to inference from reverse causality, we then explore 642 

potential violations in our assumption that there are no time-varying plot attributes that are 643 

systematically correlated with richness and productivity. To do this, we take two approaches. 644 

First, we explore violations in our assumption that prior productivity does not influence current 645 

richness, an effect that could be mediated by prior species richness (i.e., reverse causality in prior 646 

year) or by other dynamic mediators. To address this potential source of bias from a plot-level, 647 

time-varying confounder, we use two alternative estimators (Section S7b.i) that replace the plot 648 

“fixed effects” with lagged productivity (i.e., lagged dependent variable estimators). Second, we 649 

take a more general approach to quantifying our uncertainty about the potential bias from a time-650 
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varying, plot-level confounders. We create bounds our estimated targeted causal effect by 651 

assuming that there are time-varying plot attributes that are systematically correlated with 652 

richness and productivity. Specifically, we explore how our estimated effect would change if 653 

there were an unobserved confounder that was negatively correlated with richness and positively 654 

correlated with productivity (i.e., a source of bias that yields a spurious negative causal 655 

relationship between richness and productivity in our design; Section S7b.ii).  656 

S6a. Reverse causality: productivity causes species richness 657 

For changes in richness to cause changes in productivity, changes in richness must occur 658 

prior to changes in productivity. However, as in most experimental and observational studies on 659 

the relationship between diversity and productivity, the Nutrient Network data on diversity and 660 

productivity are collected at the same time each year. In the absence of high-resolution temporal 661 

data (e.g., daily), we must make additional assumptions and run additional tests to rule out 662 

reverse causality. If productivity were to negatively affect richness, that causal relationship could 663 

mask a positive relationship of R on P in our design. In other words, our estimated coefficient of 664 

𝛽 in Equation (S1) may reflect a causal relationship that runs from productivity to richness, 665 

rather than the other way around (i.e., it reflects a causal graph with a directed edge that flows 666 

from P to R instead from R to P). 667 

To illustrate the problem caused by reverse causality, we create a new causal graph in Figure 668 

S4 (this graph is not acyclic because it has bi-directional arrows between two variables). We use 669 

the notation from Equation (S1) but suppress the plot subscript p and add a subscript t-1 for time 670 

lagged one period. In this new graph, we assume that bias from regressing Pt on Rt is not coming 671 

from unobserved confounders, but rather from simultaneous causal relationships in which Pt and 672 

Rt directly cause one another. If we regress Pt on Rt and the estimated coefficient 𝛽 is less than 0, 673 

a critic of our analysis could argue that the true 𝛽 is greater than zero but masked because α < 0 674 

and |α| > |𝛽|. If P𝑡 affects R𝑡, 𝜀𝑡 is necessarily correlated with R𝑡, which is a violation of our 675 

assumption that, after controlling for time-invariant plot attributes and time-varying site 676 

attributes, the remaining variation in richness in a plot is “as if randomly assigned,” 677 

independently across time (note: a similar violation arises if P𝑡-1 affects R𝑡, whereby 𝜀𝑡-1 is 678 

necessarily correlated with R𝑡; we address that possibility in the next section). 679 
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The theoretical and empirical literature on the causal effect of productivity on richness does 680 

not have a clear conclusion: studies report productivity has zero effect on richness, a negative 681 

effect on richness, and a humped-shaped effect. Nevertheless, there are some studies that report 682 

detecting a negative effect of productivity on richness (e.g., (56)). To address this potential threat 683 

to the internal validity of our estimated negative effect of richness on productivity, we take two 684 

approaches: (a) we block a mechanism (Mt in Figure S4) through which productivity can affect 685 

richness; and (b) we find a variable has no effect on productivity other than through its effect on 686 

richness (Zt in Figure S4) and use this instrumental variable to create an unbiased estimator of 687 

the effect of richness on productivity. 688 

 689 

Figure S4. Reverse Causality in the Richness-Productivity Relationship. In this causal graph, 690 

richness in one period (R) has a causal effect on productivity (P) in the same period, and vice-691 

versa. The variable M represents mechanisms that mediate these causal effects, which can be 692 

different depending on direction of the causal arrow. Richness in the prior period (Rt-1) affects 693 

richness in the current period (Rt). ε are time-varying factors that affect productivity, which, in 694 

our estimation, we assume can be correlated across time. Zt is often called an “instrumental 695 

variable.” 696 

 697 

S6a.i. Blocked mechanism design 698 

In regression analyses of a causal variable, it is well known that if one conditions on a 699 

mechanism variable, the estimated coefficient on the causal variable will no longer include the 700 

effect of the mechanism variable. In our grassland sample, if productivity were to negatively 701 

affect richness, we assume that this effect is, in part, mediated by shading; i.e., more productive 702 

plots generate greater shade, which in turn reduces richness (56). If the estimated negative 703 

relationship between richness and productivity in Figure 2 were an artifact of reverse causality 704 

mediated by shading, then putting our shading variable in Equation (S1) as a covariate would 705 
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block the effect of productivity on richness and the sign of the coefficient on richness (β) would 706 

become positive (or small and statistically insignificant if the true relationship between richness 707 

and productivity were zero). See Figure S5 below.  If shading is not an important mechanism 708 

through which productivity would affect richness in our sample, or if our measure of shading is a 709 

poor measure of the shading mechanism, our mechanism-blocking design would fail to quantify 710 

the potential threat of reverse causality. Indeed, productivity could alter biodiversity through 711 

non-light pathways, such as soil resource use, but this effect of productivity on richness is 712 

expected to, at least in part, be mediated by reductions in light from increased biomass that, in 713 

turn, reduces richness in a plot. Thus, if reverse causality was a substantial threat to our 714 

identification strategy for the effect of richness on productivity, we would expect the coefficient 715 

of richness on productivity to shift towards more positive values.  716 

      As an estimate of shading, we measure the fraction of photosynthetically active radiation 717 

(e.g., light used by plants) that reaches the soil. This measure is calculated as the ratio of 718 

photosynthetically active radiation recorded below the plant canopy (ground level, mean of two 719 

readings) and that measured above the canopy. Measurements are carried out using a light meter 720 

(e.g. Ceptometer) at the same time and in the same 1m2 sub-plots used for vegetation cover 721 

estimates. We have annual measures of ground-level light for 145 plots of our 151 plots (1011 of 722 

our 1231 observations). 723 

 724 

Figure S5. Productivity affects species richness via shading as a mechanism. In this causal 725 

graph, in addition to changes in richness causing changes in productivity, changes in productivity 726 

change causes changes in richness via shading (s). Other mechanisms (M) may also be operative 727 

but are not explicitly included in the graph.  728 

 729 
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First, we confirm that the estimated effect of richness on productivity does not change when 730 

we use the subsample of 1,007 observations for which we have measures of shading. It does not: 731 

a 10% increase in richness leads to an estimated 2.6% decrease in productivity, 95% CI [-4.4%, -732 

0.8%] (see project page DOI/10.5281/zenodo.7675340). Next, we re-estimate Equation (S1) with 733 

our shading variable included. The estimated negative effect of richness on productivity does not 734 

change: a 10% increase in richness leads to an estimated 2.6% decrease in productivity, 95% CI 735 

[-4.4%, -0.8%].2  Said another way, if reverse causality was a substantial threat to our 736 

identification strategy for the effect of richness on productivity, we would expect that, after 737 

adding shading to Equation (S1), the coefficient of richness on productivity would become 738 

substantially smaller in absolute value or, possibly, to become positive. Yet the estimate remains 739 

unchanged.  740 

S6a.ii. Instrumental variable design 741 

As an alternative approach to assess the potential threat of reverse causality that makes 742 

different assumptions from the mechanism blocking analysis, we adopt another statistical 743 

approach that is common in economics and public health, but rare in ecology: an instrumental 744 

variable design (21, 22, 57–59).   745 

We seek an attribute of the system that has a relationship with richness, but, after 746 

conditioning on other attributes, has no relationship with productivity other than through its 747 

relationship with richness. Such an attribute is illustrated by Z in Figures 1, S4 and S5. In 748 

economics and biostatistics, Z is called an instrumental variable (IV) or a surrogate variable. An 749 

example of a potential IV is randomization of planted richness by an experimenter. In field 750 

experiments, randomization of richness helps isolate the causal effect of richness on productivity, 751 

but only when the randomization affects productivity in a plot solely through its effect on 752 

richness, an assumption called excludability (60) or the exclusion restriction (i.e., one must 753 

assume there is no arrow going from Z directly to P).  754 

In the absence of randomization, one must use theory and experience to identify a naturally 755 

occurring IV. Each of the plots in our sample are unmanipulated plots that are embedded in 756 

blocks of manipulated plots in the Nutrient Network. In other words, each unmanipulated plot in 757 

 
2 See the Github project page output for Table_MechBlocking_R_se.tex and Table_MechBlocking_R_ci.tex for 

more details. 
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our sample is surrounded by a set of plots with experimental nutrient additions (see (61)). These 758 

manipulated experimental plots received randomized amounts of nutrient additions, which 759 

subsequently affected the experimental plots’ richness (62). We assume that the experimentally 760 

manipulated richness in these plots can affect the richness in unmanipulated plots in the same 761 

block through ecological dispersal channels but does not affect the productivity of these 762 

unmanipulated plots except through the effect on the plots’ richness (an assumption made more 763 

plausible by the randomization of nutrients in the neighboring plots). If that assumption is 764 

correct, we can use the average richness of an unmanipulated plot’s neighboring manipulated 765 

plots in the same block as an instrumental variable for richness in the unmanipulated plot.  766 

This time-varying spillover effect from manipulated to unmanipulated plots is plausible if 767 

either (a) the spatial pattern of nutrient manipulations in the experimental plots around each 768 

unmanipulated plot varies across blocks, or (b) the spatial pattern of manipulated plots around 769 

each unmanipulated plot varies across blocks (i.e., variation in how far apart plots in a block are 770 

to each other or in their plot-level attributes that moderate the effect of nutrient addition n on 771 

richness). We lack digital maps of the experimental designs for every site that we could use to 772 

determine the exact distance between and spatial configuration of plots and empirically confirm 773 

either of these assumptions. However, colleagues who manage the Nutrient Network believe 774 

these assumptions are credible (Dr. Eric Seabloom, personal communication). Moreover, when 775 

we regress unmanipulated plot richness on the average richness of the manipulated neighboring 776 

plots in the block, we obtain a positive and statistically significant coefficient, which is 777 

consistent with the posited spillover effect (Table S7, column 2).  778 

Table S7. Results from the Instrumental Variable Design 779 

    (1)   (2) 

    

Second Stage of 2SLS 

(Outcome=Productivity)   

First Stage of 2SLS 

(Outcome=Richness) 

ln(Richness)  -0.24      

  (0.37)   

  [-0.96, 0.49]   

ln(Average 

Neighboring Plots 

Richness)    

0.49 

(0.12) 

[0.26, 0.72] 

Number of Plots  151  151 

Number of Sites  43  43 



SI-29 

 

Number of Observations 1212   1212 

Montiel-Pflueger effective 

F-statistic   17.44 
2SLS refers to a two-stage least squares estimator, with the results from the first stage (predicting richness) in column 2 and 

the results from the second stage (estimating effect of richness on productivity using the instrument from the first stage) in 

the column 1. The M-P effective F-statistics is used to test for a weak instrument (a test that is robust to heteroscedasticity, 

serial correlation, and clustering; (63)). The value of the M-P effective F-stat implies we can reject the null hypothesis of a 

weak instrument. Standard errors in parentheses (clustered at plot level) and 95% CI in brackets. 

The excludability assumption implies that, after we condition on time-invariant plot attributes 780 

and time-varying site attributes, the richness of a plot’s manipulated neighbors affects the plot’s 781 

richness but has no effect on the plot’s productivity other than via the effect on the plot’s 782 

richness. In other words, the drivers that cause the average richness of an unmanipulated plot’s 783 

neighbors to change over time only affect the unmanipulated plot’s productivity through a 784 

change in the unmanipulated plot’s richness. The manipulated plots are randomly manipulated 785 

(32) and these manipulations have been shown to affect species richness (62). Thus, some of the 786 

changes in richness in neighboring manipulated plots are being driven by exogenous factors that 787 

could plausibly be assumed to not affect unmanipulated plot productivity except through their 788 

effects on the unmanipulated plots’ richness. For this assumption to be valid, we must assume 789 

that the nutrient additions that affect the neighboring plots’ richness have no direct effect on an 790 

unmanipulated plot’s productivity other than via effects on an unmanipulated plot’s richness 791 

(e.g., rather than dispersal being the mechanism through which neighbor plot richness affects 792 

own plot richness, it could be the nitrogen applications leaching through the ground). Colleagues 793 

who manage the Nutrient Network believe this assumption is credible (Dr. Eric Seabloom, 794 

personal communication). 795 

In addition to the excludability assumption, we need two other assumptions to use this IV to 796 

estimate a causal effect of richness on productivity: (1) first-stage non-zero effect of the IV; and 797 

(2) monotonicity. The first-stage non-zero assumption of the IV design requires that there be a 798 

correlation between neighbor’s richness and own richness, on average – in other words, the 799 

effect of neighbor’s richness on own richness is not zero for all plots. We can verify this 800 

assumption empirically (Table S8, column 1): after controlling for plot-level and site-level 801 

confounders, the average richness of the neighboring plots has a positive association with own 802 

plot richness. The monotonicity assumption implies that, for all plots, the relationship between a 803 

plot’s neighbor richness and its own richness can only be in one direction: it is either ≥ 0 or ≤ 0. 804 

In other words, we assume that we could not observe that, for some plots, higher neighbor 805 
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richness increases own richness, but for other plots, higher neighbor richness decreases own 806 

richness. The monotonicity assumption is untestable. Yet given our ecological motivations for 807 

using neighboring richness as an instrumental variable, we believe a non-negative, monotonicity 808 

assumption is a valid approximation of the field reality, i.e., assuming that an increase in the 809 

richness of surrounding manipulated plots can never decrease an unmanipulated plot’s richness. 810 

In comparison to our main design (Section S4), the IV design has two disadvantages. First, 811 

because the IV design uses only variation in richness that comes from neighboring plot richness, 812 

it will tend to have lower statistical power. Second, the IV design increases internal validity at 813 

the potential expense of external validity. Rather than estimate the average effect on productivity 814 

from any change in richness, we estimate the average effect for a subset of the changes in 815 

richness. This subset is comprised of what are called “compliers” – plot-year observations for 816 

which the richness value would have been different had the average richness in surrounding plots 817 

been different. Given our instrumental-variable is multi-valued, there are many types of 818 

compliers (e.g., plots that had 5 species in 2007 that would have had 6 species had their 819 

neighboring plots had higher species richness). If the average causal effect of changes in richness 820 

that come from changes neighboring plot richness differs from the average causal effect of 821 

changes in richness that come from other attributes of the system, the generalizability of the 822 

inferences from the IV design is more limited than in our main design. Another way to view the 823 

more limited external validity of the IV design is that the IV design allows us to estimate the 824 

average effect of richness on productivity for changes in a plot’s richness that are induced by 825 

changes in a neighbor’s richness. If that average effect is not the same as the overall average 826 

effect, the estimates from the IV design and the main design may differ, even if there is no 827 

reverse causality or other forms of hidden bias in the main design. 828 

In the IV design, we use two-stage least squares, linear, additive, fixed-effects estimator  (3), 829 

which we implement with the “ivreghdfe” command in STATA v.16. The estimated effect of 830 

richness on productivity, as well as the first-stage estimates and F-test are reported in Table S8. 831 

To ensure reproducibility and use open-access software, we also estimate the IV equation in R 832 

using ‘feols’ in the fixest package (v. 0.8.2). 833 

The estimate from the IV design implies a nearly identical estimate of the relationship 834 

between richness and productivity as we obtained from the main design: a 10% decrease in 835 

richness leads to a 2.4% increase in biomass. As expected, the effect is estimated imprecisely 836 
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(i.e., large confidence intervals). IV is a less efficient estimator (12), thus leading to predictably 837 

large confidence intervals.  838 

Note on interference among plots:  An unstated assumption in each design we implemented 839 

in our study – an assumption found even in randomized controlled experimental designs – is “no 840 

interference among units” (see (64)), which means that the potential productivity outcome in an 841 

unmanipulated plot at a specific level of richness is unaffected by the richness levels of other 842 

unmanipulated plots. The IV design may seem to imply that this assumption is violated, but the 843 

IV design relies on manipulated plot richness affecting unmanipulated plot richness, which is not 844 

interference in our study designs. In our designs, each unmanipulated plot is still assumed to 845 

have one potential outcome per richness level. We believe that interference is absent in our 846 

designs because, based on discussions with Nutrient Network coordinators, the unmanipulated 847 

plots are sufficiently separated from each other within each site in order to not interfere with 848 

each other. In other words, each unmanipulated plot’s potential productivity outcomes under 849 

different richness values only depends on its richness value, and not on the richness values of 850 

other unmanipulated plots. 851 

S6bi. Dynamic panel designs 852 

In Figure S6, we present a more complicated causal graph than the DAG in Figure 1B. To 853 

make the new graph more compact, we do not specify whether variables are acting at the plot or 854 

site level, and we assume that all variables are measured in the current period, unless otherwise 855 

stated. In this new causal graph, we have productivity (Pt) and lagged productivity (Pt-1), we 856 

have common causes (U) of richness (R) and Pt and Pt-1, and common causes (I) of Pt and Pt-1. 857 

This causal graph is “unidentified” – in other words, there is no observational design that could 858 

estimate the effect of R on P without bias, unless we make more assumptions. 859 

 860 
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Figure S6. Reverse Causality in the Richness-Productivity Relationship in which Prior 861 

Productivity Affects Current Richness. In this causal graph, richness in the current period (Rt) 862 

has a causal effect on productivity (Pt) in the same period, and productivity in the prior period 863 

(Pt-1) has a causal effect on richness and productivity in the current period. The graph includes 864 

the two types of confounders that are the focus of the Main Design: time-invariant, plot-level 865 

confounders (Up) and time-varying, site-level confounders (Ust). For simplicity, the graph does 866 

not include the variable I from Figure 1 (i.e., factors that affect P but not R).  867 
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 868 

 869 

Figure S7. Causal Graphs that Reflect the Main Design Estimation Strategy. Our Main Design is valid for each causal graph in 870 

this figure. The graph includes the two types of confounders that are the focus of the Main Design: time-invariant, plot-level 871 

confounders (Up) and time-varying, site-level confounders (Ust). For simplicity, the graph does not include the variable I from Figure 1 872 

(i.e., factors that affect P but not R).873 
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Our Main Design assumes the most important sources of confounding are from Up and Ust 874 

and that a directed edge from Pt-1 to Rt does not exist in combination with a directed edge from 875 

Pt-1 to Pt (i.e., all panels in Figure S7 are allowed). Productivity can be serially correlated over 876 

time from unobserved variables, but there cannot be a causal effect of Pt-1 on Pt that is mediated 877 

by Rt in this design.  878 

If there were instead a directed edge from Pt-1 to R, but either (i) no directed edge from U to 879 

R, Pt-1 and Pt  (panel A of Figure S8; i.e., no unobserved common causes of richness and 880 

productivity) or (ii) no directed edge from I to Pt-1 and Pt  (panel B of Fig. S8; i.e., no 881 

unobserved, persistent causes of productivity), one could estimate the effect of R on P without 882 

bias by conditioning on Pt-1; in other words, via a lagged-dependent variable specification (in this 883 

context we have both a form of reverse causation and a form of time-varying confounding).   884 

 885 

Figure S8. Reverse Causality in the Richness-Productivity Relationship in which Prior 886 

Productivity Affects Current Richness. In these causal graphs, richness in the current period 887 

(R) has a causal effect on productivity (P) in the same period, and productivity in the prior period 888 

has a causal effect on richness and productivity in the current period. The graph includes the two 889 

types of confounders that are the focus of the Main Design: time-invariant, plot-level 890 

confounders (Up) and time-varying, site-level confounders (Ust). For simplicity, the graph does 891 

not include the variable I from Figure 1 (i.e., factors that affect P but not R). 892 

The causal processes implied by the causal graphs in Figure S7 and S8 are observationally 893 

indistinguishable. The data alone cannot tell us which estimation strategy, our Main Design or a 894 

lagged-dependent variable specification, is appropriate (unless one is willing to make untestable, 895 

parametric assumptions). In other words, productivity is temporally correlated across time – we 896 

can see that correlation in the data. The source of that temporal dependence could be unobserved 897 

persistent causes of productivity (often called “unobserved heterogeneity” in social science and 898 
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biostatistics). The design used to generate the main estimate in Fig. 2 controls for these causes 899 

and thus eliminates any potential biases when such causes also are linked to richness. However, 900 

the source of temporal dependence could be a direct link between productivity in one year and 901 

productivity in the next year (e.g., via nutrient storage in roots). If that were the case, and if 902 

biomass in one year also affected richness in the next year (often called “state dependence” in 903 

social science and biostatistics), our main design may have bias. If, for example, productivity 904 

was positively correlated across years and lagged productivity had a negative effect on current 905 

richness, our estimated effect of richness on productivity using our main estimator would be too 906 

negative. To eliminate that bias, we could condition on lagged productivity: 907 

ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 + Ωln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−1)  +  𝜇𝑠𝑡 +  𝜀𝑝𝑠𝑡    (S2)  908 

In other words, if Fig. S8 is the correct interpretation of the systems we are studying, and we 909 

use the estimator from Equation S1, the estimated 𝛽 will be too large in the negative direction 910 

(away from zero) compared to the true effect. If, however, Fig S7 is the correct interpretation of 911 

the systems we are studying, and we use the lagged dependent variable estimator from Equation 912 

S2, the estimated 𝛽 will be too large in the positive direction (towards zero) compared to the true 913 

effect. If the confounding process is a mix of the two, the two estimates bracket the true expected 914 

causal response (3). We estimate Equation S2 using the “reghdfe” command in STATA (v.16) 915 

and the ‘feols’ command in R using the fixest package (v. 0.8.2). 916 

As expected, the estimated effect from Equation S2 is less negative (smaller in absolute 917 

magnitude), providing an upper bound on the effect of species richness on biomass (Table S8). 918 

Still, this estimate implies a negative effect of richness on productivity, with the lower 95% 919 

confidence interval overlapping the estimate from the estimator in the Main Design (Equation 920 

S1). 921 

Finally, what if the true system were characterized by Fig. S6 and not approximated by either 922 

Fig. S7 or Fig. S8? Then we would have to make more assumptions to identify the effect of 923 

richness on productivity. For example, if we are willing to assume that the persistent causes of 924 

productivity across years (I) comprises autoregressive disturbances of order 1, the effect of R on 925 

P can be estimated using an autoregressive distributed lag equation of order 2 in autoregression 926 

and order 1 in distributed lags (65). Using the “reghdfe” command in STATA (v.16) and the 927 

‘feols’ command in R using the fixest package (v.0.8.2), we estimate the following model: 928 
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ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 +  𝛽′ ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠(𝑡−1) +929 

Ω ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−1) + Ω′ ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−2) +  𝜇𝑠𝑡 + 𝜀𝑝𝑠𝑡     (S3)  930 

Table S8. Results from the Dynamic Panel Design. Results present coefficient estimates of a 931 

1% increase in the ln richness on ln of productivity (measured as live biomass); clustered robust 932 

standard errors are shown in the parentheses, and 95% confidence intervals in brackets.  To see 933 

95% confidence intervals as well, see the project page (TableS8_R_CI.tex). 934 

 935 

 936 

        ln(Productivity)    937 

--------------------------------------------------------------------------------------------------------------------- 938 

ln(SR)                                                  -0.1329*                     939 

                                       (0.0789)    940 

       [-0.2876, 0.0218]   941 

                        942 

ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−1)                              0.1374***         943 

                                       (0.0377)   944 

          [0.0634, 0.2113]                                           945 

--------------------------------------------------------------------------------------------------------------------- 946 

Num. obs.                                           1063                       947 

R^2 (full model)                                  0.83               948 

===================================================================== 949 

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1 950 
Robust Standard errors in parentheses (clustered at plot level). 951 

 952 

When we estimate this equation S3, our estimated effect of richness on productivity is similar 953 

to our main estimate in Fig. 2: a 10% increase in richness leads to a 2.4% decrease in 954 

productivity, 95% CI [-4.4, -0.4]. Adding one more lag for richness and productivity (i.e., 955 

including ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠(𝑡−2)  and ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−3)) yields a similar estimate of -2.0% for ln 956 

Richnesspst.  957 

As a final estimator, we follow the suggestion of a peer reviewer and combine the Main 958 

Design estimator (Equation S1) and the Lagged Dependent Variable design (Equation S2). This 959 

estimator is potentially biased for reasons that can be found in other publications (e.g., (3), 960 

Sections 5.3-5.4). The intuition is that the combination of 𝛿𝑝𝑠 from Equation (S1) and 961 

𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠(𝑡−1) from Equation (S2) can create a correlation between richness and the error 962 

term in the model, which makes the estimator inconsistent (i.e., the estimator will not converge 963 

in probability to the true value of our target parameter even as the number of plots in our panel 964 
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goes to infinity). This problem is not caused by an autocorrelated error process. The problem 965 

arises even if the error process is i.i.d. If the error process is autocorrelated, the problem is even 966 

more severe. Despite this potential bias, the estimated effect is similar to the estimates from the 967 

other approaches: a 10% increase in richness, on average, decreases productivity by 2.8% [95% 968 

CI: -4.6%, -1.1%]. 969 

     Note: In Figures S6-S8, we do not include a graph in which Pt-1 → Rt , Rt → Pt , and no other 970 

direct edges exist. We exclude this graph because this pattern is not ecologically possible (i.e., a 971 

case where prior productivity had an effect on current productivity and richness would be the 972 

sole mediator or, equivalently, prior productivity has no effect on current productivity except 973 

through its effect on current richness). 974 

S6b.ii. Design sensitivity to unobserved, plot-level confounding variables 975 

     Imagine a set of unobserved, time-varying, plot-level confounding variables that are 976 

negatively associated with richness and positively associated with productivity (so-called 977 

“negative selection bias”). Were such a set of confounding variables to exist in our system, the 978 

true average causal response in our sample could be closer to zero or positive. However, as we 979 

will see below, using time-invariant plot attributes and time-varying site attributes, we can 980 

explain about 90% of the variation in annual richness and productivity. Thus, there is little 981 

variation left that could come from this unobserved variable and induce bias in our estimator. 982 

Nevertheless, we test the sensitivity of our inferences to such a confounding variable. 983 

Following the method introduced by Altonji et al. (66) and further developed by Oster (67), 984 

we assume that the relationship between species richness and the omitted, unobserved 985 

confounding variables can be characterized using information from the relationship between the 986 

richness variable and the variables in Equation (S1). Oster in (67) assumes that observable 987 

covariates contribute (approximately) proportionally to treatment and to the outcome (i.e., the 988 

time-invariant plot attributes and the time-varying site attributes are as important in explaining 989 

richness as they are in explaining productivity conditional on richness). If that assumption is a 990 

reasonable approximation of the truth, which seems credible given our data (Table S7), we can 991 

then explore the conditions under which the omitted variables could change our conclusions. 992 

Said another way, this analysis answers the question, “How much correlation between the 993 

unobserved variable and the richness/productivity variables would be sufficient to change our 994 

conclusions?” 995 
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Recall that our preferred estimation Equation (S1) includes variables capturing time-invariant 996 

plot attributes (𝛿𝑝) and time-varying site attributes (𝜇𝑠𝑡). That equation is most easily and 997 

efficiently estimated by taking first differences or deviations from means, so that 𝛿𝑝 drops out 998 

before estimating the coefficient 𝛽1. Thus, any goodness-of-fit measure, like R2, would not 999 

include the role of the plot fixed effects in explaining variation in productivity.  1000 

However, estimating Equation (S1) is equivalent to estimating the following specification: 1001 

ln (𝐵𝑖𝑜𝑚𝑎𝑠𝑠)𝑝𝑠𝑡 = 𝛽0 + 𝛽1ln (𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠)𝑝𝑠𝑡 + 𝜇𝑠𝑡 + ∑ 𝛼𝑝𝑠𝑑𝑝𝑠𝑝𝑠 + 𝜖𝑝𝑠𝑡   (S4) 1002 

where the variables are as before but rather than eliminate time-invariant plot attributes (𝛿𝑝𝑠) by 1003 

taking deviations from the mean (Section S4), we model them through a new set of variables: 𝑑𝑝 1004 

is a set of plot dummy variables and 𝛼 is a vector of coefficients of the plot dummy variables. 1005 

We can estimate this equation using the ‘areg’ command in STATA (v.16).  1006 

The estimated 𝛽1 will be the same as the estimated 𝛽 from our deviations-in-means 1007 

estimation of Equation (S1), although the estimated standard errors will be larger using equation 1008 

(3) (i.e., estimating Equation (S4) is less efficient than estimating Equation (S1) via deviations in 1009 

means). These differences in estimated standard errors come from clustering the standard error 1010 

estimation at the plot-level. Clustering standard errors in the ‘areg’ procedure adjusts the degrees 1011 

of freedom by the number of fixed effects removed in the within-group transformation. In 1012 

contrast, the reghdfe (or xtreg fe) procedure does not make such an adjustment and thus reports 1013 

smaller cluster-robust standard errors. Thus, to estimate the effect of richness on productivity, the 1014 

xtreg fe or reghdfe estimation procedure is preferred. However, for our sensitivity analysis, using 1015 

the ‘areg’ procedure is preferred because it allows us to use the time-invariant, plot-level 1016 

characteristics as control variables, rather than treat them as nuisance parameters that can be 1017 

eliminated via first-differencing or taking deviations from means. Table S9 (column 1) reports 1018 

the results from the areg regression with clustered standard errors at the plot level. As expected, 1019 

the ‘areg’-estimated coefficient on species richness is the same as the estimate in the main text, 1020 

but with a larger standard error.  1021 

To explore the sensitivity of our design to an unobserved confounder, or set of confounders, 1022 

Oster (67) shows that one must first make an assumption about the R-squared value from a 1023 

hypothetical regression of productivity on the unobserved confounder and the variables in 1024 

Equation (S4). If this value, called Rmax, were set equal to one, it would be equivalent to saying 1025 
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that the variation in annual productivity can be fully explained by the hypothetical regression 1026 

model. In other words, the unobserved confounder explains all the unexplained variation in 1027 

regression specification (S4), an assumption that implies there is no measurement error in the 1028 

live biomass measure of annual plot productivity. The R-squared from the regression 1029 

specification (S4) is 0.87 (Table S9, column1). Thus, an assumption that Rmax = 1 implies that the 1030 

unobserved confounder explains all remaining variation in annual productivity, which is an 1031 

implausibly powerful predictor of productivity (i.e., an implausibly strong confounder). 1032 

Table S9. Regression results to support sensitivity analysis to hidden bias.  1033 

    (1)   (2) 

    

Outcome Equation: 

Productivity   

Selection Equation:  

Species Richness 

Species Richness  -0.24   

  (0.09)   

  [-0.42, -0.06]   

R-Squared   0.87   0.91 

Number of Plots  151  151 

Number of Sites  43  43 

Number of Observations 1231   1231 
The first column replicates our main result from column 1, Table S2 but uses a dummy variable procedure to control for 

plot-level fixed effects rather than a deviations-from-means procedure (and thus standard error estimates are slightly larger in 

this table). The second column regresses plot-level richness on plot dummy variables and the year-by-site variables. The 

sample size is larger in second column because fewer plots have missing richness values than have missing productivity 

values. Robust standard errors in parentheses (clustered at plot level) and 95% CI in brackets. 

 1034 

We next specify the magnitude of the degree of selection on unobservable variables relative 1035 

to the selection on observable variables. This parameter π (called 𝛿 in Oster’s article) yields a 1036 

measure of our design’s sensitivity to hidden bias: how would our results change were there an 1037 

unobserved confounder (or set of confounders) that is correlated with richness and productivity?  1038 

The unobserved confounder is assumed to be uncorrelated with the other variables in our 1039 

equation; it is most easily envisioned as a time-varying confounder that is orthogonal to our site-1040 

by-year variables and our time-invariant plot variables. To help determine a plausible value for π, 1041 

we use ‘areg’ to estimate the relationship between the richness and the observable covariates in 1042 

Equation (S4) using the following specification: 1043 

ln (𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠)𝑝𝑠𝑡 = 𝛽0 + 𝜇𝑠𝑡 + ∑ 𝛼𝑝𝑠𝑑𝑝𝑠𝑝𝑠 + 𝜖𝑝𝑠𝑡         (S5) 1044 
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Results from this regression are reported in Table S9. The R2 from this regression (Table S9, 1045 

column 2) implies that the variables in our regression specification already explain about 91% of 1046 

the variation in annual plot richness. Setting the value of π equal to -0.10 would be equivalent to 1047 

assuming that the unobserved confounder explains all the remaining variation in richness (i.e., 1048 

the unobserved confounder explains about 9% of the variation in annual plot richness). 1049 

Setting 𝜋 = -0.10 and Rmax = 1 would mimic a powerful potential unobserved confounder in 1050 

our design: a confounder that is so strongly correlated with productivity and richness that, were 1051 

we able to observe it (along with the other variables in the equation), we could predict with near 1052 

certainty which of two plots would have higher productivity and which would have higher 1053 

richness. Estimating the effect of richness on productivity with those implausible parameter 1054 

values yields an upper bound on the impact of richness on productivity. For completeness, we 1055 

also calculate a lower bound on the impact by setting 𝜋 = 0.10 (i.e., positive selection bias). 1056 

To estimate these bounds, we use the ‘psacalc’ package in Stata (v.16) as a post-estimation 1057 

function after estimating the effect of richness on productivity using Stata’s ‘areg’ command. 1058 

The estimated upper bound is still negative: a 10 % increase in richness implies a 2.0% decrease 1059 

in productivity. In other words, in the presence of an unobserved confounder that is negatively 1060 

associated with richness and positively associated with productivity relationship (thus creating 1061 

some spurious correlation between richness and productivity), we would still infer that there is a 1062 

negative relationship between richness and productivity. To infer a positive relationship between 1063 

the two variables would require an infeasible value for 𝜋: it requires  𝜋>1, which implies the 1064 

confounder would have to be more influential in explaining variation of productivity than the 1065 

plot-level, time-invariant attributes and the site-level, time-varying attributes. We also consider 1066 

an unobservable confounder that is masking some of the negative effect of richness on 1067 

productivity. If the unobserved confounder was positively associated with both richness and 1068 

productivity, a 10% increase in richness would decrease productivity by an estimated 3.0%. 1069 

Overall, the sensitivity analysis implies that our estimated effect of richness on productivity 1070 

is not sensitive to the presence of a time-varying confounder. 1071 

 1072 

 1073 

 1074 
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S7. Comparison of Main Design to Common Designs in Ecology  1075 

    Here, we refer to multi-level modeling, hierarchical modeling, random effects modeling, 1076 

mixed effects modeling, or variance components modeling as a Common Design in Ecology with 1077 

which we compare our Main Design.  Ecologists who are familiar with multi-level modeling 1078 

may wonder why, given our data are comprised of plots nested within sites and annual 1079 

observations nested within plots, we do not use this multi-level modeling approach as our main 1080 

design. A full explanation is beyond the scope of this SI, but the main reason has two parts:  1081 

(a) Without more variable transformations, the multi-level modeling approach does not 1082 

easily lend itself to controlling for as many unobservable sources of confounding as can 1083 

be done in our linear, additive, fixed-effects panel data estimator. Note that our use of the 1084 

term ‘fixed effects’ corresponds to the use of the term in econometrics (3, 4) – and the 1085 

meaning differs from the use in multi-level modeling uses in Ecology; see Glossary S1 1086 

for more details.  The typical multi-level model assumes “selection on observables” (see 1087 

Glossary S1). In other words, the model requires stronger assumptions to infer causality 1088 

from the correlation between richness and productivity; it assumes that there is no 1089 

correlation between unobserved components of the error term at the site and plot levels 1090 

and the species richness variable (17, 44). This assumption is easily violated in this 1091 

dataset. In other words, the multi-level model assumes that the propensity of plots to 1092 

experience change in their species richness is not determined by variables that also affect 1093 

productivity and are not explicitly in our model (i.e., not determined by variables in the 1094 

error term). In contrast, in our panel data design, the time-invariant individual and site 1095 

attributes are no longer part of the error term. Thus, we do not have to make that strong 1096 

“selection on observables” assumption made by traditional multi-level models.  1097 

(b) Clustering our standard errors at the plot provides the same benefits that multi-level 1098 

modeling does when estimating the variance-covariance matrix in the presence of intra-1099 

site correlations among plots (44).  1100 

The disadvantage of our design (i.e., Equation S1) is that, in the process of eliminating the 1101 

role of confounding variables, we also eliminated variables that affect productivity but do not 1102 

affect richness (I in Figure 1B) – i.e., both the “bad” between-plot (confounders) and “good” 1103 

between-plot variation (predictors) are eliminated, thus reducing statistical power (increasing 1104 
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standard error estimates) and limiting the scope of some of the analysis that can be performed 1105 

(68). For example, we cannot, in our study, estimate the associations between productivity and 1106 

time-invariant attributes like soils or climate. Some other research aims, like estimating how the 1107 

effect of richness on productivity varies by site (versus site-level moderators), are easier to 1108 

accomplish in multi-level modeling designs. 1109 

In our study, however, we are focused on estimating the causal effect of biodiversity on 1110 

productivity. Thus, in our study context, the traditional multi-level modeling approach – which 1111 

aims to control for observable confounding variables by including them in the model - has no 1112 

advantages over our approach, and a serious disadvantage in its inability to control for 1113 

unobservable sources of confounding variation without data transformation that mimics what 1114 

happens in our estimation of Equation (S3) (see last paragraph in this section for details). 1115 

Indeed, not controlling for unobservable sources of confounding variation leads to bias in 1116 

estimates.   1117 

Nevertheless, to demonstrate how much design matters in drawing inferences from 1118 

observational data, we estimate a traditional random-effects equation by using a GLS estimator  1119 

 ln 𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡 = 𝛽 ln 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑝𝑠𝑡 + ∑ 𝛾𝑋𝑝 + ∑ 𝜃𝑋𝑠 + 𝜗𝑡  +   𝜑𝑝 + 𝜌𝑠 +  𝜀𝑝𝑠𝑡   (S6) 1120 

where 𝜑𝑝 and 𝜌𝑠 are parts of the error term and Xp and Xs are observable attributes of plot and 1121 

site, respectively. This equation represents the “Common Design in Ecology” that we report 1122 

in the main text. Unlike Equation (S1), this equation uses both the within-plot variation in 1123 

species richness and the between-plot variation in richness to estimate the effect of richness on 1124 

productivity (i.e., the estimator produces a matrix-weighted average of the between-plot and 1125 

within-plot estimates). The between-plot variation in species richness can be caused by many 1126 

attributes that may also be correlated with productivity. We follow a traditional approach in 1127 

ecology and attempt to control for (block) the confounding effects of these attributes by 1128 

measuring them and adding them to the equation (Xp and Xs). In the words of the multi-level 1129 

modeling community, the γ and the θ are “fixed effects” and the φp and ρs are “random effects.” 1130 

The “fixed effects” are directly estimated whereas the “random effects” are not, but rather 1131 

summarized according to their estimated variances and covariances. 1132 
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Because our data set is large, we can control for over 60 observable confounders, including 1133 

variables for soil attributes, habitat types, historical management categories, weather, year, 1134 

country, and elevation (see Table S10). In other words, we can control for a wide range of 1135 

variables that may affect both richness and productivity. Along with species richness, these 1136 

variables explain 57% of the overall (spatial and temporal) variation in productivity (live 1137 

biomass) and 95% of between-plot (spatial) variation in productivity.   1138 

Using this design, the estimated relationship between richness and productivity is much more 1139 

in line with the conventional wisdom in the ecology literature: a 10% increase in plot richness 1140 

increases plot productivity, on average, by 3.8%, 95% CI [2.0%, 5.6%]. In other words, when we 1141 

do not leverage the spatial and temporal variation to eliminate the effects of unobserved plot and 1142 

site attributes (i.e., our Main Design), we draw the opposite conclusion about the relationship 1143 

between richness and biomass.  1144 

The problem with this Common Design in Ecology is too few control variables, not too 1145 

many. Failing to control for a confounding variable leads to omitted variables bias (reviewed in 1146 

(69)), yet it is impossible to know or measure all confounding variables in a complex ecosystem 1147 

system. Thus, the problem cannot be solved by adopting a “model selection” procedure to select, 1148 

based on some measure of prediction error, a subset of the 60 variables (e.g., forward-selection 1149 

or backward-selection procedures). Including control variables that have no correlation with the 1150 

outcome will indeed add noise to the estimation procedure and unnecessarily reduce the 1151 

precision of the estimated effect of richness on productivity. But precision is not a problem in 1152 

our study because of our large sample size. Potential bias is the problem. Thus, the choice of 1153 

control variables must not be driven by statistical benchmarks but rather by theory and field 1154 

experience about which ecosystem features may affect both richness and productivity. One can 1155 

only justify eliminating control variables from the model if one believes that the remaining 1156 

covariates eliminate the correlation between richness and the model error term, which can only 1157 

be justified based on theory or field experience.  1158 

A multi-level structural equation model (SEM) would be more flexible than the multi-level 1159 

regression we implement in Equation (S6), but if we used the same observable variables, it 1160 

would not affect the coefficient estimates. Use of a SEM would affect the standard error 1161 

estimates, which is not relevant to make our point related to how our inference on the sign of the 1162 

estimated effect of richness on productivity switches across designs. SEMs are also useful for 1163 
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estimating mediator effects (e.g., by specifying direct and indirect paths), estimating the 1164 

relationship between observed and latent variables, and developing predictive models of 1165 

productivity, but none of those aims are relevant for our study design. 1166 

Table S10. Control Variables in Common Design in Ecology 1167 

Attribute Covariate Variables 

Country variables Australia (AU), Canada (CA), Switzerland (CH), Germany 

(DE), Tanzania (TZ), United Kingdom (UK), United States 

(US) 

Habitat variables Alpine grassland, Annual grassland, Desert grassland, Mesic 

grassland, Montane grassland, Old field, Pasture, Savanna, 

Semiarid Grassland, Shortgrass prairie, Shrub steppe, Tallgrass 

prairie 

Observation year variables  

(Year in site’s panel data set) 

1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th 

Historical site management 

variables 

Active management (otherwise wild), Active managed burning 

regime, Regularly grazed by herbivores, Restored 

Topographical variables Elevation (meters) 

Weather variables* Temperature Seasonality (standard deviation *100), Max 

Temperature of Warmest Month, Min Temperature of Coldest 

Month, Mean Temperature of Wettest Quarter, Mean 

Temperature of Driest Quarter, Mean Temperature of Warmest 

Quarter, Mean Temperature of Coldest Quarter 

Soil physical property 

variables 

Soil Percent Sand, Soil Percent Silt, Soil Percent Clay 

Soil fertility variables Soil Percent Carbon by Mass, Soil Percent Nitrogen by Mass, 

Soil Phosphorus by Mass (ppm), Soil Potassium by Mass 

(ppm), Soil Calcium by Mass (ppm), Soil Magnesium by Mass 

(ppm), Soil Sulfur by Mass (ppm), Soil Sodium by Mass 

(ppm), Soil Zinc by Mass (ppm), Soil Manganese by Mass 

(ppm), Soil Iron by Mass (ppm), Soil Copper by Mass (ppm), 

Soil Born by Mass (ppm), pH 
* The weather variable values in NutNet are site-level averages over time (i.e., they are time-invariant). Thus, 1168 
controlling for temperature variables listed in Table S10 also controls for the precipitation variables, 1169 
evapotranspiration variables, and other weather variables. In other words, the temperature variables serve as site-1170 
level indicator variables and the estimated effect would be the same if, for example, we used precipitation variables 1171 
instead of temperature variables. 1172 

The positive estimated effect from Equation (S6) is not driven by having to drop sites that did 1173 

not measure all the covariates (the sites in France, Portugal, and South Africa did not collect the 1174 

soil data). If we use only the 675 observations from the multi-level modeling in our Main 1175 

Design, we still obtain a negative estimated effect of richness on productivity, albeit less 1176 

precisely estimated because of the smaller sample size: a 10% increase in plot richness decreases 1177 
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plot productivity, on average, by 3.11%, i.e., the estimated effect is - 3.11%, with 95% 1178 

confidence interval of [-6.31%, 0.09%]. Thus, the contrast between the Main Design and the 1179 

Common Design in Ecology is not affected by the change in the sample composition. 1180 

The key issue that we highlight is one of “design” – not of methods (i.e., type of estimation 1181 

procedure). In principle, one could accomplish the same objectives of our design within a multi-1182 

level or SEM framework by using a group-mean centering transformation of the data (i.e., 1183 

within-plot centering of time-varying richness; (68, 70)). The key innovation in our design is to 1184 

leverage the panel data to control for a wide range of time-invariant plot attributes and time-1185 

varying site attributes -- a wider range of confounders than previous studies have addressed. 1186 

Whether that leverage is exploited in a single regression equation or in a system of regression 1187 

equations matters little for the estimation of the effect of plot richness on plot productivity. 1188 

 1189 

S8. Supplementary Methods: Heterogeneous Effects of Rare, Non-rare, and 1190 

Non-native Species on Productivity  1191 

     To shed light on the reasons why an increase in species richness reduces productivity, on 1192 

average, we decompose species richness into groups of species. Using the plot-level data from 1193 

the Nutrient Network (see section S8a), we first decompose overall species richness into native 1194 

versus non-native species and rare versus non-rare species (by “non-rare”, we mean dominant 1195 

and subordinate species). We then create groups for four categories of species that combine 1196 

rarity and non-native status: (1) rare and native, (2) rare and non-native, (3) non-rare and non-1197 

native, and finally (4) non-rare and native.  1198 

     As in most ecosystems worldwide (71), and consistent with theory (72), the rank abundance 1199 

curves of species from our sites imply that most species in these ecosystems are rare (Figure 1200 

S10). Thus, not surprisingly, higher species richness at our 43 sites is associated with, on 1201 

average, higher numbers of rare species (Fig S11(A)). Moreover, as in many natural ecosystems 1202 

in the Anthropocene (73), higher species richness at our 43 sites is also associated with, on 1203 

average, higher numbers of non-native species (Fig S11(B)). Thus, higher numbers of species 1204 

tend to be associated with more rare and non-native species in a place, and these species may 1205 

have different effects on productivity than native non-rare species (e.g. 60, 61). Our analysis 1206 
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contributes to our understanding of how the effect of species richness on productivity depends on 1207 

the characteristics of the biodiversity changing. 1208 

     All code to reproduce the data processing in section S8 can be found at the project page. This 1209 

code was checked by 3 additional people beyond the lead author. 1210 

 1211 

 1212 

Figure S10.  Most species are rare in these grassland ecosystems. Rank abundance curves 1213 

(RAC) for each Nutrient Network site in our analysis shown in Table S1. These RACs are for the 1214 

pre-treatment year, which we use to define species as rare or non-rare. Here, species abundance 1215 

is based on relative live cover at the site-level.  1216 

 1217 
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 1218 

Figure S11. Greater diversity, in terms of more numbers of species, is associated with more 1219 

(A) native rare species and (B) non-native species, on average. We plot the association 1220 

between overall species richness (SR) and counts of native rare species and of non-native 1221 

species, per plot and year. 1222 

S8a. Definitions and Measurement of groups in Figure 5 1223 

     To classify species by rarity and origin, we use plot-level data from the entire site (i.e., not 1224 

just our 151 unmanipulated plots). The rarity designation is based on measures of relative 1225 

abundance at the site. To ensure that our relative abundance measures are unaffected by the 1226 

experimental manipulations at the site, we use data only from the pre-treatment years. Species 1227 

absent during the first year were treated differently (see below). 1228 

     Note that because we classify the species in the groups based on pre-treatment year data, the 1229 

site “saline.us” is excluded from this analysis because the site does not have pre-treatment data. 1230 

Dropping the 24 observations from the site “saline.us” does not change our estimates in Figure 2 1231 

and 3.  1232 

Native versus Non-native Species 1233 

     In the Nutrient Network, species origin was determined by the site coordinators and 1234 

designated by one of three categories: “native”, “INT” (i.e., non-native), or “unknown origin” 1235 

(see “ProcessNutNet_coverData_FINAL_public.R” code on our project GitHub release 1236 

DOI/10.5281/zenodo.7675340 for more details). We compute the number of species that are 1237 

classified as native and non-native in each plot in each year and then construct species richness 1238 
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variables for each species type in each plot in each year. We drop the species of “unknown 1239 

origin” present in the pre-treatment year in our main analysis, but to consider how the 1240 

uncertainty about the origin of some species in the data could affect our conclusions, we 1241 

performed a bounding approach where we re-estimate the effects by first assuming all unknown 1242 

origin species are native and then assuming they are all non-native (see S8ci. Sensitivity 1243 

Analyses: Species with unknown origin). 1244 

 1245 

Classifying Rare versus Non-Rare Species  1246 

     We assign the labels of “rare” and “non-rare” to species in multiple ways, using definitions 1247 

based on two metrics for relative abundance of a species at a site: the relative cover of each 1248 

species at a site and the relative frequency of each species at a site. To calculate relative cover 1249 

and relative frequency, we use live cover only in the pre-treatment year. Next, we classify 1250 

species as “rare” based on their cover and frequency relative to other species at each site (see 1251 

below). We then compute the number of species that are classified as rare or non-rare in each 1252 

plot in each year and then construct species richness variables for each species type in each plot 1253 

in each year.  Below, we describe each step in this procedure.  1254 

     In the main text, we define “rare” species using the relative cover metric. We use relative 1255 

cover as our metric for abundance, because we believe better captures the range of mechanisms 1256 

through which rare species may decrease productivity, including taking space formerly occupied 1257 

by more productive species. In Section S8c.ii, we report the results using the relative frequency 1258 

metric. In Section S8c.iii, we also test the sensitivity of our conclusions to different cutoff values 1259 

for assigning a species to the “rare” and “non-rare” categories.  1260 

Computing the relative cover metric 1261 

     For each species present in the pre-treatment year, we computed the relative cover as the sum 1262 

of the plot cover of the species for all plots at the site, divided by the total cover in all plots at 1263 

that site. Note that some plots exceed 100% cover, whereas other plots are <100%; thus, we 1264 

standardize this metric by dividing the sum of the maximum cover of a species in each plot at a 1265 

site by the total live cover in all plots at a site.  1266 

Classifying species as rare or non-rare using relative cover 1267 
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     Using the relative cover metric, we classify species into three categories: dominant, 1268 

subordinate, and rare. The categorization of rare, subordinate, and dominant species is based on 1269 

the quantiles of the species’ relative cover data for each site, created using the ‘quantile’ function 1270 

in R.  1271 

     The first classification, presented in the main text Figure 5 and Table S10, labeled species at a 1272 

site with relative cover in the lowest 60% of the site-level distribution (0.6 quantile) to be rare 1273 

and species in the top 95% of the distribution (0.95 quantile) to be dominant. The species with 1274 

relative cover in between these two cut-off values were labeled subordinate. These cut-off values 1275 

lead to a maximum of 1 to 4 species dominant species per site, consistent with (76), and a 1276 

median of 2 dominant species (average of 2.3). This cut-off leads to an average of 21.7 rare 1277 

species and median of 20 rare species per site and an average of 12.73 and median of 12 1278 

subordinate species per site. To maintain objectivity in the analysis, the person who 1279 

recommended these cut-off values (Kaitlin Kimmel) was not the person running the estimation 1280 

analyses. To assess whether the cut-off values generated a sensible classification of species – 1281 

particularly with regard to differentiating dominant from rare species – the person who 1282 

recommended the cut-off values (co-author Dr. Kaitlin Kimmel) checked which species were 1283 

labeled “dominant” at two sites about which she had extensive knowledge (cdcr.us and knz.us). 1284 

She confirmed that the three species that were labeled dominant at each site were indeed what 1285 

experts would label as the dominant species.  1286 

     Given that few species are dominant at each site and, by definition, these species do not exit 1287 

and enter plots with great frequency, we combine the numbers of dominant and subordinate 1288 

species into the non-rare species richness variable. We test the sensitivity of our results to the 1289 

choice of cut off values for classifying species as rare or non-rare (Section S8c.iii).  1290 

     Several species were not observed in the first year of data collection at a site, implying that 1291 

those species had a relative cover and relative frequency of 0 in that pre-treatment year. 1292 

However, rather than assume these species are rare or non-rare, we classified these species 1293 

separately (as “NA species”) and controlled for them in our analyses (see Section S8c.i).  1294 

      Once we classify species are “rare”, “non-rare” and “NA” based on pre-treatment data, we 1295 

then count the number of species in each combined category for each plot and year.  1296 

 1297 

S8b. Statistical Analyses  1298 
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    Combining the classification of species by origin and the classification of species by rarity, we 1299 

can count the number of Non-Rare Native species, Rare Native species, Non-Rare Non-Native 1300 

Species, Rare Non-Native species, and species classified as NA for each plot and year. We then 1301 

substitute the richness variables of each species category for the overall “species richness” 1302 

variable used in our main Equation (S1). In other words, we substitute the five categories of 1303 

richness for the single “richness” variable of Equation (S1):  1304 

ln(𝐿𝑖𝑣𝑒𝑀𝑎𝑠𝑠𝑝𝑠𝑡) = 𝛽𝐷𝑁 𝑖ℎ𝑠( 𝑁𝑜𝑛𝑅𝑎𝑟𝑒𝑁𝑎𝑡𝑖𝑣𝑒𝑝𝑠𝑡) + 𝛽𝑅𝑁 𝑖ℎ𝑠( 𝑅𝑎𝑟𝑒𝑁𝑎𝑡𝑖𝑣𝑒𝑝𝑠𝑡) +1305 

 𝛽𝐷𝑁𝑁 𝑖ℎ𝑠( 𝑁𝑜𝑛𝑅𝑎𝑟𝑒𝑁𝑎𝑡𝑖𝑣𝑒𝑝𝑠𝑡) + 𝛽𝑅𝑁𝑁 𝑖ℎ𝑠( 𝑅𝑎𝑟𝑒𝑁𝑜𝑛𝑁𝑎𝑡𝑖𝑣𝑒𝑝𝑠𝑡) + 𝛽𝑁𝐴 𝑖ℎ𝑠( 𝑁𝐴𝑠𝑝𝑝𝑝𝑠𝑡) +1306 

𝛿𝑝𝑠 + 𝜇𝑠𝑡 + 𝜀𝑝𝑠𝑡            (S7) 1307 

     The species richness variables are transformed with an inverse hyperbolic sine transformation 1308 

rather than a natural logarithm transformation. The inverse hyperbolic sine transformation is 1309 

analogous to a log-transformation but can be used when there are many 0 observations (52). 1310 

Given the inverse hyperbolic sine transformation of the richness variables, the estimated effects 1311 

cannot be interpreted as elasticities without further manipulation, but their signs and relative 1312 

magnitudes can be compared to each other. 1313 

S8c. Comparing the effect of species richness per group on productivity  1314 

     In Figure 5 and Table S11, we present the estimated effects of species richness on 1315 

productivity, conditional on species type, using relative cover to classify species as non-rare or 1316 

rare. The estimates imply that an increase in species richness has a positive effect on productivity 1317 

when the increase is coming from non-rare, native species or from rare, non-native species. But 1318 

for rare, native species, as well as for non-rare, non-native species, the estimated effects are 1319 

negative. The estimated effect is largest in absolute value for rare, native species and non-rare, 1320 

non-native species. We reject the null hypotheses that changes in the richness of these groups of 1321 

species have an equivalent effect on live mass (Chisq = 9.8205, Pr(>Chisq)   = 0.02016).  1322 

     Controlling for the number of species labeled “NA” that enter the plots after the pre-treatment 1323 

year (which we call “NA species richness”) does not change the inferences drawn (Table S11 –1324 

i.e., compare column 1 versus column 2). In the main text Figure 5, we present the conservative 1325 

model that controls for the NA species richness. 1326 

 1327 
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Table S11. The effect of species richness (SR) on biomass production conditional on species 1328 

type, using species relative cover to determine rare versus non-rare species. We estimate 1329 

Equation (S1) with species richness disaggregated into the numbers of non-rare native species, 1330 

rare native species, non-rare non-native species, and rare non-native species. In column 1, we 1331 

controlled for the number of species not found in the pre-treatment year at site; in column 2, we 1332 

perform a sensitivity analysis, dropping that species count. All estimated effects of each category 1333 

of species richness (SR) are on a log-inverse-hyperbolic-sine scale. Given the inverse hyperbolic 1334 

sine (his) transformation of the species richness variables, the estimated effects cannot be 1335 

interpreted as elasticities without further manipulation, but their signs and relative magnitudes 1336 

can be compared to each other. Clustered-robust standard errors are used and clustered at the plot 1337 

level. To see 95% confidence intervals as well, see the project page (output/TableS11_R_CI.tex). 1338 

================================================================== 1339 

Main Text           Dropping counts of NA species 1340 

--------------------------------------------------------------------------------------------------------------------- 1341 

Non-rare, Native SR       0.0488        0.0507 1342 

                                                              (0.0721)                          (0.0723)                            1343 

Non-Rare, Non-Native SR    -0.1721***                             -0.1794*** 1344 

                                        (0.0649)                                  (0.0651)          1345 

Rare, Non-Native SR               0.0397      0.030 1346 

                                     (0.0711)                                  (0.0701) 1347 

Rare. Native SR    -0.1473***                    -0.1429***     1348 

                                     (0.0459)     (0.0466) 1349 

SR of NA species                                 -0.0901** 1350 

       (0.0430) 1351 

--------------------------------------------------------------------------------------------------------------------- 1352 

Num. obs.                     1,175                          1,175  1353 

Num. plots        146    146  1354 

R^2 (full model)              0.79                         0.79          1355 

===================================================================== 1356 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 1357 
Robust Standard errors in parentheses (clustered at plot level). 1358 

 1359 

S8ci. Sensitivity Analyses for species with unknown origins  1360 

     Several species were classified as of “unknown origin.” The analyses presented in Table S11 1361 

and S13 and Figure 5 omit species of unknown origin from the groups. To test the sensitive of 1362 

our results to this uncertainty, we bound the estimated effects by considering two possible 1363 

extreme scenarios: 1) all species of unknown origin are native and 2) all species of unknown 1364 

origin are non-native. Thus, we revise the species groups in Equation (S7) and re-rerun the 1365 

analyses with these two sets of models to establish bounds. The signs and magnitudes of the 1366 

estimated effects in Tables S12 and S13 are similar to those in Table S11.  1367 
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Table S12. Sensitivity Analyses: treating species of unknown origin as native. We estimate 1368 

Equation (S1) with species richness disaggregated into the numbers of non-rare native species, 1369 

rare native species, non-rare non-native species, and rare non-native species. Here we treat 1370 

species of unknown origin as native (rare or non-rare). In column 1, we controlled for the 1371 

number of species not found in the pre-treatment year at site; in column 2, we perform a 1372 

sensitivity analysis, dropping that species count. All estimated effects of each category of species 1373 

richness (SR) are on a log-inverse-hyperbolic-sine scale. Given the inverse hyperbolic sine 1374 

transformation of the species richness variables, the estimated effects cannot be interpreted as 1375 

elasticities without further manipulation, but their signs and relative magnitudes can be 1376 

compared to each other. Clustered-robust standard errors are used and clustered at the plot level. 1377 

To see 95% confidence intervals as well, see the project page (output/TableS12_R_CI.tex). 1378 

===================================================================== 1379 

     Controlling for NA species           Dropping counts of NA species 1380 

--------------------------------------------------------------------------------------------------------------------- 1381 

Non-rare, Native + unknown SR   0.0848   0.0878 1382 

                                     (0.0712)                                  (0.0719) 1383 

Non-Rare, Non-Native SR    -0.1717***                            -0.1796*** 1384 

                                        (0.0640)    (0.0646)          1385 

Rare, Non-Native SR              0.0367    0.0263 1386 

      (0.0704)    (0.0693) 1387 

Rare. Native + unknown SR   -0.1399***                    -0.1333***     1388 

                                     (0.0458)     (0.0470) 1389 

SR of NA species                                   -0.0914** 1390 

       (0.0432)  1391 

--------------------------------------------------------------------------------------------------------------------- 1392 

Num. obs.                     1,175                          1,175  1393 

Num. Plots       146    146 1394 

R^2 (full model)              0.79                          0.79                  1395 

===================================================================== 1396 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 1397 
Robust Standard errors in parentheses (clustered at plot level). 1398 

S8cii. Sensitivity analyses using relative frequency as a metric for rarity  1399 

     We next check the robustness of the results to our choice of metric for determining rarity, 1400 

comparing our results in Figure 5 to estimates when defining rarity based on relative frequency, 1401 

rather than relative abundance. We calculate relative frequency as the number of plots that a 1402 

species occurs in a year divided by the total number of plots at a site in each year.   1403 

     The inferences about the effects of different species groups on productivity are similar using 1404 

frequency instead of cover (Table S14). The Zenodo release of project page also includes results 1405 

for relative frequency dealing with unknown species origin as above in section S8c.i. Results are 1406 

similar; for more details see the project page (/output/TableS14Sensitivity_R_se.tex). 1407 
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Table S13. Sensitivity Analyses: treating species of unknown origin as non-native.  We 1408 

estimate Equation (S1) with species richness disaggregated into the numbers of non-rare native 1409 

species, rare native species, non-rare non-native species, and rare non-native species. Here we 1410 

treat species of unknown origin as non-native (rare or non-rare). In column 1, we controlled for 1411 

the number of species not found in the pre-treatment year at site; in column 2, we perform a 1412 

sensitivity analysis, dropping that species count. All estimated effects of each category of species 1413 

richness (SR) are on a log-inverse-hyperbolic-sine scale. Given the inverse hyperbolic sine 1414 

transformation of the species richness variables, the estimated effects cannot be interpreted as 1415 

elasticities without further manipulation, but their signs and relative magnitudes can be 1416 

compared to each other. Clustered-robust standard errors are used and clustered at the plot level. 1417 

To see 95% confidence intervals as well, see the project page (output/TableS13_R_CI.tex). 1418 

===================================================================== 1419 

       Controlling for NA species           Dropping counts of NA species 1420 

--------------------------------------------------------------------------------------------------------------------- 1421 

Non-rare, Native SR                 0.0451             0.0458 1422 

                                              (0.0725)                                   (0.0726) 1423 

Non-Rare, Non-Native + unknown SR        -0.1362**            -0.1382** 1424 

      (0.0669)              (0.0666) 1425 

Rare, Non-Native + unknown SR                  0.0512               0.0514 1426 

               (0.0617)               (0.0616) 1427 

Rare. Native SR                      -0.1500***                                  -0.1467*** 1428 

                                                 (0.0456)     (0.0462)          1429 

SR of NA species                                        -0.0916** 1430 

              (0.0432)  1431 

--------------------------------------------------------------------------------------------------------------------- 1432 

Num. obs.                     1,175                            1,175  1433 

Num. Plots      146           146 1434 

R^2 (full model)              0.79                    0.79          1435 

===================================================================== 1436 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 1437 
Robust Standard errors in parentheses (clustered at plot level). 1438 

      1439 

 1440 

 1441 

 1442 

 1443 

 1444 
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Table S14. Sensitivity Analysis using Relative Frequency. We determine species groups and 1445 

the effect of species richness (SR) on biomass production conditional on species type, using 1446 

species relative frequency to determine rare versus non-rare species. We estimate Equation (S1) 1447 

with species richness disaggregated into the numbers of non-rare native species, rare native 1448 

species, non-rare non-native species, and rare non-native species. In column 1, we controlled for 1449 

the number of species not found in the pre-treatment year at site; in column 2, we perform a 1450 

sensitivity analysis, dropping that species count. All estimated effects of each category of species 1451 

richness (SR) are on a log-inverse-hyperbolic-sine scale. Given the inverse hyperbolic sine 1452 

transformation of the species richness variables, the estimated effects cannot be interpreted as 1453 

elasticities without further manipulation, but their signs and relative magnitudes can be 1454 

compared to each other. Clustered-robust standard errors are used and clustered at the plot level. 1455 

To see 95% confidence intervals as well, see the project page (output/TableS14_R_CI.tex). Also, 1456 

please find other sensitivity analyses as done in Table S12 and S13 but using relative frequency 1457 

on the project page (analyses_fig5_smsection8.R). The conclusions remain unchanged. 1458 

================================================================== 1459 

Controlling for NA species            Dropping counts of NA species 1460 

--------------------------------------------------------------------------------------------------------------------- 1461 

Non-rare, Native SR        0.0411       0.0505 1462 

                                                               (0.0804)      (0.0825)                             1463 

Non-Rare, Non-Native SR    -0.1739**                             -0.1844*** 1464 

                                         (0.0688)                                  (0.0685)          1465 

Rare, Non-Native SR               -0.0126   -0.0183 1466 

                                      (0.0606)     (0.0592) 1467 

Rare. Native SR   -0.0936*    -0.0914* 1468 

                                    (0.0500)   (0.0500) 1469 

SR of NA species                                 -0.0834* 1470 

       (0.0420) 1471 

--------------------------------------------------------------------------------------------------------------------- 1472 

Num. obs.                     1,175                          1,175  1473 

Num. plots       146    146 1474 

R^2 (full model)              0.78                           0.78                  1475 

===================================================================== 1476 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1 1477 
Robust Standard errors in parentheses (clustered at plot level). 1478 

S8ciii. Sensitivity Analyses using different cut-offs for rare versus non-rare categories  1479 

     To assess the sensitivity of the results to the classification criteria for rare and non-rare 1480 

species, we use two additional cut-offs. Cut-off 2 labels species at a site with relative frequency 1481 

in the lowest 70% of the site-level distribution (0.7 quantile) to be rare and species the top 95% 1482 

of the distribution (0.95 quantile) to be dominant. The species with relative cover in between 1483 

these two cut-off values were labeled subordinate. Cut-off 3 labels species at a site with relative 1484 

frequency in the lowest 50% of the site-level distribution (0.5 quantile) to be rare and species the 1485 

top 95% of the distribution (0.95 quantile) to be dominant. The species with relative cover in 1486 
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between these two cut-off values were labeled subordinate. As in the analysis for Table S11, the 1487 

subordinate and dominant species were grouped together in the “non-rare” category. As shown in 1488 

Table S15, these changes in the cut-off criteria do not change the signs of our estimates and have 1489 

little effect on their magnitudes. 1490 

Table S15. Sensitivity Analyses: Comparing inferences when using different cutoffs for 1491 

defining species as rare or non-rare based on their relative cover at a site. We compare our 1492 

results presented in Figure 5 (column 1 with Cut off 1) to two additional cut offs for classifying a 1493 

rare versus non-rare species (in columns 2 and 3); these cutoffs are described in Section S8ciii. 1494 

Again, we estimate Equation (S1) with species richness disaggregated into the numbers of non-1495 

rare native species, rare native species, non-rare non-native species, and rare non-native species 1496 

with groups defined based on each of the three cut offs. All estimated effects of each category of 1497 

species richness (SR) are on a log-inverse-hyperbolic-sine scale. Given the inverse hyperbolic 1498 

sine transformation of the species richness variables, the estimated effects cannot be interpreted 1499 

as elasticities without further manipulation, but their signs and relative magnitudes can be 1500 

compared to each other. Clustered-robust standard errors are used and clustered at the plot level. 1501 

To see 95% confidence intervals as well, see the project page (output/TableS15_R_CI.tex). 1502 

================================================================== 1503 

Cut off 1        Cut off 2         Cut off 3  1504 

               [Main Text] 1505 

--------------------------------------------------------------------------------------------------------------------- 1506 

Non-rare, Native SR       0.0488                            0.0505                     0.0097           1507 

                                                              (0.0721)                        (0.0848)                 (0.0717)  1508 

Non-Rare, Non-Native SR    -0.1721***                  -0.2143***           -0.1746*** 1509 

                                         (0.0649)                          (0.0736)                 (0.0664) 1510 

Rare, Non-Native SR               0.0397                             -0.0178                 -0.0254 1511 

                                      (0.0711)                            (0.0658)              (0.0691) 1512 

Rare, Native SR      -0.1473 ***                   -0.1050**              -0.0889* 1513 

                                     (0.0459)                           (0.0445)                (0.0483) 1514 

--------------------------------------------------------------------------------------------------------------------- 1515 

Num. obs.                     1,175                        1,175                  1,175               1516 

Num. plots       146    146    146 1517 

R^2 (full model)              0.79               0.78          0.78        1518 

===================================================================== 1519 

Signif. Codes: ***: 0.01, **: 0.05, *:0.1; Robust Standard errors in parentheses (clustered at plot level). 1520 

 1521 

 1522 

S8d. Variation in each species group 1523 

      Our analysis exploits observed temporal variation in the data, namely year-to-year changes in 1524 

each species richness group in a plot. To provide more contextual detail on this variation, we 1525 

show how changes in the richness of each group of species varies over time by site in Figure 1526 

S12. Figure S13 breaks this variation down even further by site. These figures imply that the 1527 
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variation in overall species richness in Figure S2 is driven by changes in rare, native species and 1528 

non-rare, non-native species. 1529 

 1530 

Figure S12. Year-to-year changes in the counts of each species group per plot. (A) non-1531 

native, rare species richness; (B) native, non-rare species richness; (C) native, rare species 1532 

richness; and (D) non-native rare species richness.  1533 

 1534 

 1535 
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1536 

 1537 

Figure S13. Year-to-year changes in the counts of each species group per plot for each site 1538 

in the analysis.  1539 

 1540 

 1541 

 1542 

 1543 
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Supplementary Discussion  1544 

S9. Nine Frequently Asked Questions (FAQ) about Dee et al. 1545 

     An FAQ is not usually added to an SI, but we found this FAQ to be an effective way to 1546 

answer a set of common questions that many readers have and to further clarify how our study 1547 

differs from prior studies in ecology.  1548 

FAQ#1. Does Dee et al. overturn the popular wisdom from over thirty years of research on 1549 

the effect of species richness on productivity? 1550 

No, but we hope our study gives ecologists a different perspective on the popular wisdom, a 1551 

new approach for conducting empirical ecological research, and fruitful avenues to pursue in 1552 

theory and experiments. 1553 

Regarding the new perspective on the popular wisdom, we believe our study: 1554 

(i) Estimates the average effect of changes in species richness on productivity when 1555 

richness changes as it does in natural ecosystems, as opposed to when it changes via 1556 

manipulations in experimental systems (see FAQs #2-#4) 1557 

(ii) Accounts for the biological complexity of the ecosystem more comprehensively than 1558 

prior observational designs (see FAQs #6-#8). 1559 

Our results are, in fact, broadly consistent with experimental findings of biodiversity 1560 

manipulations (‘BEF experiments’ hereafter). We estimate that an increase in the richness of 1561 

species typically planted in BEF experiments – i.e., native, relatively common (‘non-rare’) 1562 

species – has a positive effect on aboveground productivity. However, the Nutrient Network 1563 

plots contain many more species than are, and can be feasibly, manipulated in experiments; 1564 

namely many more rare and non-native species. More rare species and non-native species are 1565 

associated with higher species richness (Fig. S10), and most species in these ecosystems are rare 1566 

(Fig. S11) as in most ecosystems (71). These are the species that are changing the most from 1567 

year to year (Fig. S12 & S13), and they have a different estimated average effect on productivity 1568 

than do the native non-rare species (Figure 5, main text). 1569 

Regarding the new approach for ecological research, we believe our approach: 1570 

(iii) Makes our causal aspirations transparent (“Exactly what ecological relationship are 1571 

we trying to estimate?”). See FAQ #2, #3, and #6.  1572 
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(iv) Makes our causal assumptions transparent and motivates them through a combination 1573 

of field knowledge and ecological theory (“What exactly are we assuming when we 1574 

give a causal interpretation to an estimated correlation between richness and 1575 

productivity?”). See FAQ#4, #5, #7, and #8.  1576 

(v) Assesses how changes in our causal assumptions affect our inferences (“How would 1577 

our interpretations change if we use alternative assumptions that may be plausible or 1578 

equally as valid as the assumptions we originally made?”). See FAQ #7 and Figure 3 1579 

in manuscript.  1580 

Our goal was to build on prior work and advance our collective understanding of the role of 1581 

biodiversity in ecological functions – not to claim a ‘final answer.’ We make our assumptions 1582 

about relationships between the data and our inferences as transparent as possible and explore the 1583 

implications of these assumptions. This transparency, we hope, makes it easier for ecologists to 1584 

continue to build on this work, by probing and relaxing these assumptions, and assessing their 1585 

robustness to new data and methods.  1586 

FAQ#2. Why is the estimated average effect in Dee et al. negative while most 1587 

experimental evidence implies the effect is positive? Is it because the research 1588 

questions differ; in other words, because the causal effect that experiments aim to 1589 

estimate and the causal effect that Dee et al. aim to estimate differ? 1590 

Yes, differences in research questions could be one reason why the signs of the estimated 1591 

effects of species richness on productivity are different. Species richness could change in many 1592 

ways, and these different ways are unlikely to have the same effects on ecosystem function. 1593 

The typical BEF experiment aims to estimate the expected effect from a change in richness 1594 

that arises from a random draw from the pool of species that could grow at the study location and 1595 

from the potential values of evenness (i.e., the effect of changing richness independent of 1596 

composition attributes). That causal effect is helpful for developing theory because it isolates the 1597 

effect of species richness separate from changes in species identities and evenness that may 1598 

normally accompany a change in richness. 1599 

However, for understanding the ecology of natural systems and processes, particularly when 1600 

thinking about the conservation implications of anthropogenic change, we and others (e.g., (77)) 1601 
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argue that the most relevant causal effect of richness on 1602 

productivity is the expected effect of a change in species richness 1603 

that mimics how richness changes in naturally occurring systems – 1604 

more precisely, a change in richness that arises from a random draw 1605 

from a weighted conditional distribution of species richness 1606 

compositions at different richness values. For example, if dominant 1607 

species tend to comprise the majority of species additions or 1608 

subtractions when diversity is low, but rare species tend to 1609 

comprise the majority of species additions or subtractions when 1610 

diversity is high, changes in richness in the study should reflect 1611 

those probability distributions (i.e., as a plot or site gets more 1612 

diverse, the marginal/incremental species should be more likely to 1613 

be rare). Our study aims to estimate this causal effect. 1614 

So, in sum, “Yes,” the different research aims of the 1615 

experimental and Dee et al. designs could be a reason for the 1616 

divergence in results (see also Box 1). 1617 

 1618 

FAQ#3. Why is the estimated average effect in Dee et al. 1619 

negative while most experimental evidence implies the 1620 

effect is positive? Is it because the effects of richness on 1621 

productivity is conditional on species identity (a 1622 

heterogeneous treatment) and the experiments do not 1623 

plant the same set of species that are found in natural 1624 

ecosystems?  1625 

Yes, the estimated effects of species richness on productivity 1626 

may differ because the set of species growing in Dee et al. and in 1627 

experimental studies differ.  1628 

     To estimate the average effect of richness on productivity independent of other attributes of 1629 

diversity, experiments would have to randomize all other attributes of diversity (e.g., identities, 1630 

After reading this FAQ answer, are you thinking that 

“composition” is a confounder in Dee et al.? If yes, see Figure 

4 in main text. 

 

 

 

The causal effects described in 

FAQ#2 are not sufficiently 

precise because they lack spatial 

and temporal dimensions. Over 

what spatial scale and time 

horizon are we evaluating the 

effect of a change in richness? 

For example, are we referring to 

the difference in productivity in a 

patch over one year when the 

species richness changes from X 

to Y in a manner that mimics 

naturally occurring processes? Or 

are we referring to the difference 

in productivity in a patch over 

one hundred years when the 

species richness changes from X 

to Y in a manner that mimics 

naturally occurring processes? 

We return to this issue in FAQ 

#5. 

 

Box 1: Spatial and 
temporal dimensions 
of diversity’s effects 
on productivity 
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densities, relative abundances, traits/functional characteristics). Of course, to do so would be 1631 

prohibitively expensive or logistically infeasible. Instead, to our knowledge, most biodiversity-1632 

ecosystem functioning (BEF) experiments hold planted evenness constant at 1, with some 1633 

exceptions (for instance, an experiment by Wilsey & Polley (2004) randomize richness across 1634 

two values of evenness). Some experiments, for a subset of treatments, consider crosses between 1635 

functional and species diversity (78). But it’s logistically impossible to do all combinations. 1636 

Moreover, BEF experiments plant some combinations of species from the set of all possible 1637 

species identities and compositions that grow at a site, but not all. For example, in some places, 1638 

sourcing seeds for rare species is prohibitively expensive. To our knowledge, BEF experiments 1639 

do not plant all combinations of species identities, particularly at higher richness values.  1640 

In other words, the species planted in the experimental designs do not comprise the full set of 1641 

species that may naturally grow at a study site. Recall that in Dee et al., the negative estimated 1642 

effect of richness on productivity appears to come from rare species and non-native species. For 1643 

native, dominant species, the estimated effect of richness on productivity is positive. This latter 1644 

result from Dee et al result is consistent with BEF experiments, because these native, dominant 1645 

species typically comprise most species planted in experiments. Few experiments plant truly rare 1646 

species or non-native species, or in the proportions found in natural systems. We further test this 1647 

conjecture by analyzing two long-term biodiversity experiments with our study design and find 1648 

evidence consistent with the conjecture (see Section S10 for more information).  1649 

In the few experiments that have planted rare species, the rare species are a small fraction of 1650 

the total species that have been planted in nearly all cases (but see the Jena experiment (79)). In 1651 

the few experiments that have planted non-native species, the non-native species are also a small 1652 

fraction of the total species that have been planted. For example, BioCon includes two non-1653 

native species out of the 16 planted, and these two were naturalized to the site (P. Reich, pers 1654 

comm). An exception is Wilsey et al. (2009), which paired species according to their native vs 1655 

introduced status at a site in Texas, USA (80), where a maximum of 9 non-native species were 1656 

planted, out of 20 total planted species.  1657 

Even in BEF experiments that plant rare species, the planted rare species may have been less 1658 

likely to emerge and persist. This phenomenon is known as ‘non-compliance’ with treatment 1659 

assignment.3 With non-compliance, Z species are planted in a plot (planted richness), but only D 1660 

 
3 Non-compliance is also a common, and frequently discussed, challenge in medical randomized control trials.  
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< Z species emerge or persist (i.e., the ‘realized richness’) and subsequently affect productivity. 1661 

If the species that have a negative or zero effect on productivity are less likely to grow or 1662 

survive, it is possible that the true average effect of species richness on productivity in the 1663 

experiments could be zero or negative (“true effect” meaning the effect if all planted species 1664 

were to survive), while the “as planted” estimated average effect of richness on productivity 1665 

reported by the experimenters is positive. Analyzing an example of experimental data, we find 1666 

evidence for differential non-compliance – some species (e.g., Anemone cylindrica) that are rare 1667 

in natural systems in Minnesota, USA do not frequently emerge in the experiment when planted, 1668 

particularly in high diversity plots (Box 2). To determine relative abundance and rarity in natural 1669 

communities, we use long-term survey data of grasslands around Minnesota, USA from the 1670 

Minnesota Department of Natural Resources (MN DNR); see dataset details in (81). 1671 

 1672 

Box 2. Differential non-compliance in experiments 1673 

Are rare species less likely than other species 1674 

to be observed growing after being planted in 1675 

BEF experiments? To shed light on this 1676 

question, we first analyze relative cover and 1677 

relative frequency data from MN DNR’s 1678 

grassland monitoring. These data comprise 1679 

over 41,000 observations of species, sampled 1680 

over the last 10 years from 701 transects 1681 

(each with ~25 plots). Using these data, we 1682 

then classify species from BioCon 1683 

experiments (Cedar Creek) as naturally rare 1684 

or non-rare (dominant or subordinate) based on the metrics and cut-offs described in the Dee et al SI 1685 

(section S8). Then we calculate the probability that a species is observed growing at each planted 1686 

diversity level (1,2,4,8,16) by comparing the planted versus realized species data. We can then assess 1687 

if “non-compliance” varies based on the species classifications from the MN DNR data (rare, 1688 

subordinate, dominant). We find that rare species are less likely be observed post-planting. Some 1689 

rare species almost never emerge in low diversity plots and never emerge in the 16-species plots 1690 

(e.g., Anemone cylindrica). 1691 

   = mean       = median 
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So, in contrast to the causal effect that experiments aim to estimate (described in FAQ #2), 1692 

the causal effect that experiments actually estimate is the expected effect of a change in richness 1693 

that arises from a random draw from a subset of species that could grow at the site, while 1694 

holding evenness to a specific value. These causal effects from different subsets, or versions, of 1695 

richness can be helpful for shedding light on the mechanisms through which biodiversity affects 1696 

ecosystem functions -- and thus for shedding light on the heterogeneity of biodiversity’s effects 1697 

on ecosystem functions.4  But they may not match, in sign or magnitude, the target causal effect 1698 

that experimentalists aim to estimate. 1699 

In sum, “Yes,” the results from experimental designs and Dee et al.’s design may differ 1700 

because different species are planted or survive in the two designs.  1701 

FAQ#4. Why is the estimated average effect in Dee et al. negative while most 1702 

experimental evidence implies the effect is positive? Is it because of potential 1703 

statistical biases in Dee et al., like unobserved confounding variables or reverse 1704 

causality, or potential statistical biases in experimental designs?  1705 

Yes, biases in either experimental designs or in Dee et al.’s design could create the 1706 

divergence in results. In our study, we highlight a variety of potential sources of hidden bias in 1707 

their design: for example, unobserved confounders, including measurement error, and reverse 1708 

causality, where the effect of productivity on diversity masks or mimics the effect of diversity on 1709 

productivity. We attempt to shed light on whether these sources of potential bias could plausibly 1710 

mask a true positive relationship between richness and productivity. We find no evidence for 1711 

such masking, but, of course, absence of evidence is not evidence of absence. Note that the 1712 

estimation method itself (i.e., the statistical model) is not likely to yield a negative effect when 1713 

the true effect is positive. Indeed, applying our estimation method to experimental data (with a 1714 

time-varying treatment or before-after data) gives the same answer as a simpler method that 1715 

simply compares mean differences among treated and control groups (section S10). 1716 

Experimental designs with randomized treatments can also have hidden biases (reviewed in 1717 

(82)). For example, a design that uses comparisons of productivity across different levels of 1718 

planted richness to estimate richness’s effect on productivity could be biased if randomized 1719 

planting, followed by weeding of non-planted species, affects productivity through channels 1720 

 
4 However, a broader suite of mechanisms could be operative in natural systems or the relative importance of the 

mechanisms could differ (92). 
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other than richness (e.g., a channel like soil disturbance). Wilsey & Polley (2006) noted that 1721 

“manipulative experiments have the disadvantage of disturbing soil during plot establishment 1722 

(84).”  1723 

Although hidden biases in one or both types of designs (ours and experimental) could be one 1724 

reason for the divergence in results, we believe the two reasons outlined in FAQ #2 and FAQ #3 1725 

are more likely: different research questions and different sets of species. 1726 

FAQ#5. Models and causal inference: could we use structural equation modeling?  1727 

The aim of causal inference is to move from a statistical model to a causal model – or more 1728 

precisely, to move from a statistical interpretation of a model to a causal interpretation. One 1729 

cannot make that move without making assumptions, some of which are likely to be untestable. 1730 

In other words, causal inference cannot rely simply on statistical methods (e.g., structural 1731 

equation modeling and t-tests). Methods must be complemented by assumptions that determine 1732 

whether a relationship estimated within a model can be interpreted causally (5, 8, 9). 1733 

Assumptions are required for all casual inference, whether the data come from an experimental 1734 

design or an observational design. 1735 

These causal assumptions typically matter more than the statistical methods – an insight that 1736 

is often summarized in variants of the phrase “design matters more than methods.” For example, 1737 

both structural equation modeling (SEM) and our approach use regression models. In fact, the 1738 

Dee et al. design could be implemented within an SEM framework. On their own, regression 1739 

models are simply statistical models without any causal content.  1740 

The key innovation of our study is the design rather than the estimation method. In other 1741 

words, our key contribution is the insight that panel data can be exploited to control for a wider 1742 

range of confounding variables than prior studies have achieved. We exert this control in two 1743 

ways: (1) control for plot-level fixed effects via a deviation-in-means statistical estimation 1744 

procedure; and (2) adding site-by-year dummies to our regression estimator. We could have 1745 

exerted this control in multi-level or SEM model by (1) controlling for plot-level fixed effects 1746 

via a centering transformation of the data; and (2) adding site-by-year dummies to a SEM model. 1747 

Like any causal study, a study that uses SEM requires assumptions for causal interpretation of its 1748 

estimates. For SEMs that do not use panel data, a large set of assumptions must be satisfied for 1749 

each equation in a SEM to be able to estimate, without bias, its target causal effects. For 1750 
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example, a SEM with a single year of data cannot address potential confounders for each of the 1751 

target causal variables unless either: (1) all potential confounders are measured and in the model; 1752 

or (2) the SEM has a valid instrument variable (IV) for each causal variable of interest (variable 1753 

Z in Fig. 1). In other fields, scholars view these assumptions as hard to defend and thus there is 1754 

some skepticism about such “all-cause” models (with multiple hypothesis tests, one also needs to 1755 

maintain the family-wise Type 1 error rate or control the false discovery rate). 1756 

 1757 

 1758 

 1759 

FAQs #6 and #7. Readers of earlier versions of our manuscript have asked us to explain how it 

is possible that Dee et al. estimate a negative average effect of plot-level richness on productivity 

while Grace et al. (2016, Nature) estimate a positive effect, even though both studies use 

unmanipulated plots from the Nutrient Network.  

     The Grace et al. study was a seminal study because it took seriously the complexity of the 

biological system and used a multivariate approach to quantify relationships among different 

variables. As noted in the main text, we build on their study and others that followed. Although 

we cannot know with certainty why the results from our study differ, we briefly summarize our 

intuition in the main text and, in this FAQ, we describe in more detail the most plausible reasons 

for the differences.  

     As noted in FAQ#6, Dee et al. builds on the multivariate advance of Grace et al. Both studies 

are based on strong theory and field experience about the biology of the systems being studied. 

Although Dee et al.’s design may look, on the surface, to be less complex than Grace et al.’s 

SEM, the Dee et al. model tries to address the same ecological complexity. Both designs pose 

biologically informed hypotheses. It is true that the Grace et al. design aims to test many more 

hypotheses, i.e., it aims to estimate many more causal relationships than Dee et al. try to estimate 

(at least 15, by our count). Dee et al. chose to narrow the set of research questions to focus on 

ruling out rival explanations that arise from spatial and temporal biological complexity in 

grassland ecosystems. Thus, the key distinction between Grace et al and Dee et al is in the 

designs – not the methods. 
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FAQ#6. Why is the estimated average effect of plot richness on plot productivity in 1760 

Dee et al. negative while in the Grace et al. study it is positive? Is it because the 1761 

causal effect that the studies aim to estimate differs? 1762 

No, the target causal effect in Dee et al. is also one of the target causal effects in Grace et al. 1763 

Grace et al. try to estimate more causal effects than Dee et al., but both studies aim to estimate 1764 

the average effect of a change in plot-level richness on plot-level productivity. It is true that 1765 

Grace et al. and Dee et al. measure productivity differently. Grace et al. measure it as total 1766 

biomass (sum of live and dead biomass), whereas Dee et al., and many other studies, measure it 1767 

as live biomass. But using total biomass, Dee et al. generate the nearly same estimated negative 1768 

effect as they do with live biomass (-0.24, CI [-0.37, -0.11]). See code on project page.  1769 

Aren’t the “changes in species richness” in Grace et al., which uses spatial variation 1770 

in richness to estimate richness’s effect on productivity, different from the “changes 1771 

in species richness” in Dee et al., which uses temporal variation in richness? More 1772 

specifically, doesn’t Grace et al. measure a “long-run effect” of richness on 1773 

productivity, while Dee et al. measure a “short-run effect?” 1774 

We believe this question, which we have received from many people, requires some 1775 

clarification and elaboration about the two study analysis designs. So, we break down our answer 1776 

in two parts. First, we clarify that both designs use spatial variation, but only Dee et al. uses both 1777 

spatial and temporal variation. Second, we clarify when and whether comparing productivity 1778 

across plots with different values of richness, as the comparison is done in Grace et al., can 1779 

provide insights into a “long-run effect” of richness on productivity. 1780 

Both studies use spatial variation, but each uses this variation differently. 1781 

Our analysis in Dee et al. uses both spatial variation across sites and plots and temporal 1782 

variation across both sites and plots. In Grace et al., the authors use spatial variation across sites 1783 

and plots; temporal variation is not used because there is only one year of data per plot.  1784 

The Dee et al. model eliminates the spatial variation that comes from the “between-plots” 1785 

comparisons because we believe those comparisons will yield biased inferences about the 1786 

relationship between richness and productivity – hidden bias that comes from unobserved 1787 

confounding variables (see our accompanying Rmarkdown tutorial for elaboration and a visual).  1788 
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Yet, even if we were to ignore the potential bias from the between-plots comparisons and use 1789 

information from both within and between-plot comparisons and within and between-site 1790 

comparisons (called random effects” estimator in economics, (17)), we would still get a negative 1791 

estimated effect: -0.19 (SE=0.07, p= 0.01, 95% CI [-0.33, -0.04]).  Leveraging temporal 1792 

variation across sites and plots is a key innovation. 1793 

So, the negative estimated effect in Dee et al. does not arise because their design does not use 1794 

the between-plot, spatial variation in richness. 1795 

Can focusing on spatial variation across plots and sites yield insights into the “long-1796 

run effect” of richness on productivity? 1797 

By “long-run effect,” we mean the effect on productivity of a more permanent, or persistent, 1798 

shift in richness that harnesses long-run mechanisms driven by processes like speciation and 1799 

evolutionary history occurring over long periods of time -- e.g., does greater diversity explain 1800 

why certain ecosystems are more productive than others, holding all other factors constant? 1801 

In Dee et al., the estimated effect in the main design is a short-run effect: the effect of a 1802 

change of richness on productivity within ecosystems in a year. We rely on the annual within-1803 

plot changes in richness because this variation allows us to control for unobserved plot-level and 1804 

site-level confounders that are not easily controlled for in the Grace et al. design with its single 1805 

year of data. The annual changes in species richness also allows us to control for reverse 1806 

causality in two ways that differ from Grace et al.’s approach (see FAQ#7). We believe that 1807 

estimates of the short-run effects of changes in richness on productivity are ecologically relevant 1808 

because they capture the effects of changes in today’s ecosystems. Nevertheless, using short-1809 

term variation in richness may not provide insights into the effects of more persistent shifts in 1810 

richness over long time periods.  1811 

We next explain and explore considerations for estimating a long-run effect. First, we 1812 

address this question: “If we only use spatial variation in richness across plots, and ignore the 1813 

within-plot temporal variation, could we infer the long-run effects of richness on productivity?” 1814 

To do so, we apply a between-plot estimator to our data. We still obtain an estimate that is 1815 

negative, albeit small and imprecisely estimated because we only have 2 or 3 plots per site (see 1816 

STATA code on the release of the project page).  1817 
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The challenge of estimating long-run effects without long-run data is not unique to ecology – 1818 

it’s a challenge in all empirical science. An important example is the debate over the effects of 1819 

climate change, a long-run phenomenon, versus the effects of weather, a short-run phenomenon. 1820 

As in the diversity-productivity context, when there are no data at the temporal scale that one 1821 

seeks to estimate an effect, one is stuck either (a) drawing inferences about long-run effects 1822 

(climate change, persistent changes in biodiversity) by making strong, and hard to justify, 1823 

assumptions about the data-generating process, or (b) drawing inferences about short-run effects 1824 

(weather, short-run changes in biodiversity) by making more credible assumptions, which come 1825 

at the cost of less certainty over the generalizability of the estimated effects to longer time scales. 1826 

For these reasons, we opt to estimate the short-run effect.  1827 

FAQ#7. Why is the estimated average effect in Dee et al. negative while in the Grace 1828 

et al. study it is positive? Is it because each study makes different assumptions about 1829 

what is driving changes in richness and productivity? 1830 

Yes, we believe this reason is the main reason for the different results. The key insight from 1831 

Dee et al is that imposing different causal assumptions leads to different causal models, and 1832 

different models can yield different conclusions. If the underlying assumptions were false, the 1833 

estimated correlation between richness and productivity may not reflect a causal relationship. 1834 

Here we try to contrast the assumptions being made in the two studies – our main design 1835 

(Figure 2) and the Grace et al design. In doing so, we are not criticizing the Grace et al. design, 1836 

but rather showing how their assumptions differ and thus can lead to different conclusions. In 1837 

this FAQ, we only review the assumptions made in the Dee et al. main design. One strength of 1838 

our study is that we also use other designs that require different assumptions for drawing casual 1839 

inferences from the data (Figure 3). Through those designs, we probe the robustness of our 1840 

results to violations in the assumptions in the main design. The alternative assumptions in these 1841 

complementary analyses are described in detail in the SI below (section S5).  1842 

Grace et al. assumptions 1843 

To estimate the effect of plot-level richness on plot-level productivity using the Grace et al. 1844 

design, one must assume the following: 1845 

G1.  The plot-level “soil suitability” variable, which is a weighted combination of the percent 1846 

silt and percent sand, only affects plot productivity via its effect on plot richness; i.e., soil 1847 
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suitability is correlated with richness but uncorrelated with the error term in the plot 1848 

productivity equation, after conditioning on site productivity. The key insight in Grace et 1849 

al. design is that, to estimate the effect of plot richness on plot productivity without bias 1850 

(i.e., to control for omitted variables and for reverse causality), one needs a variable that 1851 

is correlated with richness, but not correlated with productivity, except through its 1852 

correlation with richness; a so-called “instrumental variable” (IV). If, however, soil 1853 

suitability affects productivity through channels other than species richness (after 1854 

conditioning on other variables in the model), the estimated correlation between richness 1855 

and productivity may not reflect a causal relationship. 1856 

a. If assumption G1 were wrong, the SEM in Grace et al. can still control for 1857 

confounders (but not reverse causality) if the only confounders are the three 1858 

observable variables in the plot productivity equation, or if one were willing to 1859 

make a very strong assumption about the covariance between unobserved richness 1860 

and productivity shocks (i.e., confounders). 1861 

G2.  There is no non-classical measurement error5 in any of the model variables that creates 1862 

bias in the design. Measurement error could come from either field measurements of the 1863 

variables in the model or the imputed missing soil variable values.  For example, one 1864 

must assume: 1865 

a. No measurement error in the observable control variables in the regression that are 1866 

also assumed to be correlated with richness (e.g., soil suitability).  1867 

b. No measurement error in productivity that is correlated with richness.  1868 

G3.  Implicit in the design are also assumptions about the nature of heterogeneous causal 1869 

effects (i.e., the variability across plots in the effect on productivity from changing 1870 

richness from X to Y species) and how the moderators of those heterogeneous effects are 1871 

distributed across plots. Because those assumptions are more technical, we do not discuss 1872 

them in detail here, but they are described in (85).   1873 

In summary, Grace et al. recognize that, in a design with only one year of data, control for 1874 

unobserved confounders is challenging unless one has a valid IV. A valid IV also controls for 1875 

 
5 Classical measurement error in a variable is when the variable is measured with error but that error is independent 

of the variables value. Non-classical measurement error is when measurement error of the variable is correlated with 

the variables value. 
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reverse causality. There is no empirical test that can validate the assumption that there is no 1876 

correlation between an IV (soil suitability) and the outcome variable (productivity) except 1877 

through the causal variable (richness). One must use theory and field experience to assess its 1878 

validity. Other implicit assumptions made in using SEMs can be found in (86, 87). 1879 

Dee et al. assumptions 1880 

With data that varies over space and time, the challenges to inferring causality from 1881 

observational data are less formidable than the challenges when using data that only varies across 1882 

space. Using panel data, Dee et al. address bias from confounding variables (omitted variable 1883 

bias) and bias from reverse causality in multiple and separate ways (see Fig 2 & 3 in 1884 

manuscript). The assumptions used in the Main Design are in the manuscript and SI, but we 1885 

summarize them here (other implicit assumptions in our main design are reviewed in (17, 88)):  1886 

D1.  No plot-level confounders that vary over time. We try several approaches to assess the 1887 

robustness of results to this assumption and also use alternative designs that do not require 1888 

this assumption (see Figure 3 and section S7): 1889 

a. We test the sensitivity of their inferences to changes in this assumption. 1890 

b. We use an alternative specification that controls for time-varying, plot-level 1891 

confounders that are correlated with plot productivity, lagged one year. 1892 

c. To address reverse causality, we use an instrumental variable (IV) design (a different 1893 

IV from the IV used in Grace et al; see assumption D3). This design also controls for 1894 

time-varying plot-level confounders when the IV is valid. 1895 

D2.  No non-classical measurement error that would create bias in the design (89). The only 1896 

“control variables” are site and year, and thus one may reasonably assume that these 1897 

variables are measured without error. Thus, the only measurement error of concern is error 1898 

in productivity measures that are correlated with richness (or correlated with the predictors 1899 

of richness in the instrumental variable design). 1900 

D3.  In the IV design, the species richness of neighboring plots (the experimentally manipulated 1901 

plots) only affects plot productivity via its effect on plot species richness; i.e., richness of 1902 

neighbors is correlated with own richness but uncorrelated with the error (disturbance) term 1903 

in the own plot productivity equation after conditioning on time-invariant plot attributes 1904 

and time-varying site attributes. To control for reverse causality, another analysis makes a 1905 

different set of assumptions than the IV design. We call this the “mechanism blocking” in 1906 
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Figure 3, and it assumes that one important mechanism through which productivity affects 1907 

richness is shading (a proposed mechanism from Grace et al.) 1908 

D4.  A weaker version of assumption G3 from the Grace et al design (weaker because we do 1909 

not rely on a large set of plot or site-level covariates in our estimation procedure).  1910 

No empirical test can validate these four assumptions. One must use theory and field experience 1911 

to assess their validity and one must probe the robustness of the results to potential violations in 1912 

the assumptions. To probe the robustness of our results, we use four approaches (Fig. 3). In each 1913 

approach, like our Main Design, causal inference requires causal assumptions. But each 1914 

approach makes different assumptions. In other words, each approach can detect hidden biases in 1915 

our design (i.e., threats to internal validity) under different conditions. Although each analysis 1916 

uses different causal assumptions, each comes to the same conclusion. That pattern is the source 1917 

of our paper’s strength of evidence: the results of each individual analysis could be explained by 1918 

a different rival explanation, but it is harder to come up with a coherent set of rival explanations 1919 

that could explain them all (including the results in Fig. 5). 1920 

Why would these different assumptions lead to estimated effects of opposite sign? 1921 

    Here, we elaborate on the logic that underlies the progression of analyses in the Results 1922 

section of the main text. This progression also highlights how our study builds on prior studies. 1923 

Let’s start by assuming that the data-generating process in the Nutrient Network grassland 1924 

ecosystems is such that the true average effect of an increase in species richness on live biomass 1925 

is negative (perhaps small).  1926 

    Could the three designs generate different conclusions from the same data set? Before using 1927 

Nutrient Network data to illustrate how the designs can indeed generate different conclusions, we 1928 

explain the intuition via four arguments:  1929 

1. In an observational design using Nutrient Network data, there are plot and site attributes 1930 

that affect richness and productivity in the same directions and that affect richness and 1931 

productivity in opposite directions (e.g., nitrogen positively affects productivity and 1932 

negatively affects richness). If these positive and negative confounding forces are roughly 1933 

similar in magnitude, the simple bivariate correlation between richness and productivity 1934 
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would be close to zero and thus would be difficult to detect statistically. The estimated 1935 

correlation may look weakly positive or negative, depending on the sample. 1936 

2. The plot and site-level confounders that are typically measured in ecological field work 1937 

tend to move richness and productivity in opposite directions, on average (e.g., nitrogen 1938 

negatively affects richness and positively affects productivity). Controlling for only these 1939 

variables thus yields a positive estimated correlation between richness and productivity.  1940 

3. The plot and site-level confounders that are typically not collected in ecological field work 1941 

tend to move richness and productivity in the same directions, on average (e.g., growing 1942 

season precipitation). If one could observe these variables and only controlled for these 1943 

variables, the estimated correlation between richness and productivity would be negative 1944 

and much larger than the true negative effect.  1945 

4. Controlling for both the observed and unobserved sources of bias leads to a negative 1946 

estimated effect of species richness on productivity, but one that is smaller than the 1947 

estimate from (3). Arguments (1)-(3) reflect what is sometimes called “point-by-point 1948 

bias,” which arises when one controls for some sources of statistical bias but not others. 1949 

“Point-by-point bias” results in the estimated effect moving further from the true effect in 1950 

comparison to when there are no controls for statistical bias. 1951 

Now, using the Nutrient Network data, we present three analyses that yield patterns consistent 1952 

with the four arguments: 1953 

A. Bivariate Correlation between Richness and Productivity: If we were to do an Adler et al-1954 

like analysis (controlling for year, given we have multiple years), we obtain an Adler et al-1955 

like result: the estimated correlation is positive (b = 0.14) but we cannot reject the null 1956 

hypothesis that the correlation between richness and productivity is zero (p = 0.17). If we 1957 

just used data from a single year, we find a positive, but statistically insignificant, estimated 1958 

effect in some years and a negative, but statistically insignificant, effect in other years. 1959 

B. Multivariate Model that Controls for Observed Confounders: Multivariate models not only 1960 

have higher explanatory power than traditional bivariate analyses, they also can control for 1961 

confounders when the confounding variables are observable. In Grace et al., a multivariate 1962 

model has much higher explanatory power than the bivariate model and yields a larger, 1963 

positive effect of richness on productivity than the bivariate model.  Here, we construct a 1964 

multivariate model that yields similar results. We assume that we do not have a valid IV, 1965 
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but we can try to control for many potential confounders using Nutrient Network data. If 1966 

we were to build on the bivariate analysis via a multivariate analysis that controls just for 1967 

17 soil variables, we obtain a result consistent with prior multivariate analyses: a positive 1968 

estimated effect (b=0.28) for which one can reject the null hypothesis of the correlation 1969 

being equal to zero (p=0.04). Another similar result: in contrast to the low R2 in the 1970 

bivariate analysis (0.04), the R2 of multivariate analysis is much higher (0.39).  If we add to 1971 

the model more possible confounders like weather, country, habitat type, and prior use (60 1972 

variables in total), the estimated effect is larger (b=0.38; p=0.02) and the R2 is 0.55 (that’s 1973 

an overall R2 for variation both within and between plots; the between-plot R2 is 0.95). 1974 

C. Multivariate Model that Controls for a Wider Range of Observed and Unobserved 1975 

Confounders (the “Common Design in Ecology” presented in this paper): Drawing on our 1976 

understanding of the biological complexity of these grassland systems, we know that there 1977 

are many unmeasured variables that could affect both biodiversity and productivity and 1978 

thus could be confounding the relationship between richness and productivity; e.g., land-1979 

use intensity and history (e.g., (90)), grazing intensity, pollinator diversity at the site, 1980 

drought or extreme precipitation events, annual growing season start time, etc. Even 1981 

adjusting for 60 covariates, as in (B), is unlikely to eliminate all confounding effects. 1982 

Because we have data over both space and time, we can control for a wide range of 1983 

confounders, whether the confounding variables can be observed or not. For this reason, we 1984 

build on the multivariate analysis in (B) by first controlling for site-level confounders via 1985 

site-by-year variables in the model. The estimated correlation between richness and 1986 

productivity is of a similar magnitude to the estimate in (B), but negative (b=-0.21). When 1987 

we further control for plot-level confounders, we get the estimated negative effect in Dee et 1988 

al. (b = -0.24). 1989 

 1990 

What’s happening? The Nutrient Network sites are likely to experience site-specific 1991 

“shocks” that vary each year (e.g., weather shocks, like a particularly dry April, or herbivory 1992 

shocks, like higher herbivore pressure than the prior year). We don’t know what exactly these 1993 

shocks are, but because we observe the same sites over many years, we can control for them. In 1994 

our data, we observe that these shocks affect productivity and richness in the same direction, on 1995 

average. We also observe that many of the observable variables collected by Nutrient Network 1996 

researchers affect productivity and richness in opposite directions, on average. So, as noted by 1997 
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Grace et al., when one looks at a single year of data, the 1998 

bivariate correlation will not show anything of note. If 1999 

one does not have a valid IV, then when one controls for 2000 

observable confounders (like soil attributes), one will see 2001 

a positive correlation between richness and productivity. 2002 

However, when one controls for a much larger range of 2003 

sources of positive and negative bias, as done in Dee et 2004 

al., you see an overall negative average effect. 2005 

So, “Yes,” we believe that some or all the difference 2006 

in results between Dee et al. and Grace et al. is 2007 

attributable to the studies making different assumptions. 2008 

Which, if any, of these sets of assumptions better 2009 

approximates the truth is something a reader must 2010 

decide. Future research could focus on assessing the 2011 

ecological conditions under which each set of 2012 

assumptions may be plausible. 2013 

FAQ#8. Why is the estimated average effect in 2014 

Dee et al. negative while in the Grace et al. study 2015 

it is positive? Is it because Grace et al. have a 2016 

larger data set? 2017 

No, both studies have large data sets. Both studies 2018 

have roughly the same number of sites: 43 in Dee et al. vs 39 in Grace et al.). Grace et al. has 2019 

more plots, whereas Dee et al. has more years. Given that the unmanipulated plots in Nutrient 2020 

Network are a random sample of plots from the sites, the two samples have similar expected 2021 

values for plot and site attributes (“similar” because the sets of sites are not identical). In other 2022 

words, the external validity of the two data sets is roughly the same, with Dee et al. perhaps 2023 

having an advantage with more sites and more years. Moreover, neither study suffers from low 2024 

statistical power (Box 3).  2025 

 2026 

 

 

Dee et al. have two or three plots per 43 

sites, on average, with at least five years of 

data per plot. Grace et al. have larger 

number of plots from 39 sites from a single 

year. Grace et al.’s larger number of plots 

helps increase the statistical power of their 

between-plot design. But Dee et al. have 

five or more time periods per plot and that 

helps to increase the statistical power of 

their within-plot design. The Dee et al. 

design is underpowered if, like Grace et al., 

we were to rely only on the between-plot 

variation in richness. The Grace et al. design 

is underpowered if, like Dee et al., they 

were to try to control for all site differences 

with site-level dummy variables. 

Box 3: Statistical power 
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FAQ#9. Won’t the answer always be that the effect of species richness on 2027 

productivity ‘depends’?   2028 

Yes and no.  Although the sign and strength of the relationship between richness and 2029 

productivity will likely vary with context, the average effect of changes in species richness on 2030 

productivity in an ecosystem is relevant both for science and for practice. Nevertheless, we 2031 

acknowledge that elucidating how the relationship between richness and productivity varies is 2032 

important. In our study, we make some advances by exploring two sources of heterogeneity: 2033 

compositional variations in the construct “richness” (i.e., multiple versions of richness depending 2034 

on composition) and variations in site and plot-level moderators (i.e., attributes that are off the 2035 

causal path between richness and productivity, like precipitation or clay content of soil, but 2036 

which moderate the mechanism effects between richness and productivity). In other words, we 2037 

explore the implications of both heterogeneous treatments and heterogeneous average causal 2038 

responses (see (91) for more on these concepts). 2039 

 Regarding richness as a heterogeneous treatment, we demonstrate that the effect of richness 2040 

on productivity depends on what type of species are changing at a site. We focus on the 2041 

heterogeneous effects of changes in rare species and dominant species, as well as changes in 2042 

native and non-native species. But other species attributes may also matter.  2043 

Regarding heterogeneous average causal responses from variations in moderating site and 2044 

plot conditions, we present some initial results on those moderators, but more work is needed 2045 

(see Section S6c & S6d, Tables S3-S6). Estimating heterogeneous treatment effects is 2046 

challenging because the probability of false positives grows dramatically as one explores various 2047 

interaction effects. Investigating heterogeneity in a treatment effect can quickly become an 2048 

exploratory, data-mining exercise in which we look for variation in the estimated effect of 2049 

richness conditional on a wide range of site and plot attributes. Instead, we advocate for a focus 2050 

to a test of a hypothesis implied by theory. Thus, more detailed exploration of heterogeneous 2051 

treatment effects is beyond the scope of the Dee et al. study.  2052 

 2053 

 2054 

 2055 

 2056 

 2057 
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